F-B Co-Doped TiO2 Nanosheets Bounded with Highly Active Anatase(001) Facets for Improved Photocatalytic Hydrogen Evolution

Mengyao ZHANG , Li WEI , Lei LIU

Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (5) : 457 -465.

PDF (10399KB)
Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (5) :457 -465. DOI: 10.19884/j.1672-5220.202406004
Advanced Functional Materials
research-article

F-B Co-Doped TiO2 Nanosheets Bounded with Highly Active Anatase(001) Facets for Improved Photocatalytic Hydrogen Evolution

Author information +
History +
PDF (10399KB)

Abstract

F-B co-doped TiO2 nanosheets with exposed anatase(001) facets were synthesized via a one-pot solvothermal method, and their photocatalytic hydrogen evolution performance was investigated. Characterization results confirm that this method effectively promotes the growth of the highly active anatase(001) facets and enhances visible and infrared light absorption while inducing oxygen vacancies. Under optimal conditions, the hydrogen evolution reaches 20.57 μmol after 10 h of ultraviolet-visible(UV-Vis) light irradiation, exceeding the commercial TiO2 nanoparticles Degussa P25 by more than 10 times. These findings highlight the potential of F-B co-doped TiO2 nanosheets for efficient photocatalysis.

Keywords

F-B co-dope / TiO2 / photocatalysis / active facet / oxygen vacancy

Cite this article

Download citation ▾
Mengyao ZHANG, Li WEI, Lei LIU. F-B Co-Doped TiO2 Nanosheets Bounded with Highly Active Anatase(001) Facets for Improved Photocatalytic Hydrogen Evolution. Journal of Donghua University(English Edition), 2025, 42(5): 457-465 DOI:10.19884/j.1672-5220.202406004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.

[2]

GUO Q, ZHOU C Y, MA Z B, et al. Fundamentals of TiO2 photocatalysis:concepts,mechanisms,and challenges[J]. Advanced Materials, 2019, 31(50):e1901997.

[3]

SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis:mechanisms and materials[J]. Chemical Reviews, 2014, 114(19):9919-9986.

[4]

MA Y, WANG X L, JIA Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews, 2014, 114(19):9987-10043.

[5]

CHEN X B, MAO S S. Titanium dioxide nanomaterials:synthesis,properties,modifications,and applications[J]. Chemical Reviews, 2007, 107(7):2891-2959.

[6]

WANG S C, LIU G, WANG L Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting[J]. Chemical Reviews, 2019, 119(8):5192-5247.

[7]

VITTADINI A, SELLONI A, ROTZINGER F P, et al. Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces[J]. Physical Review Letters, 1998, 81(14):2954-2957.

[8]

GONG X Q, SELLONI A. Reactivity of anatase TiO2 nanoparticles:the role of the minority (001) surface[J]. The Journal of Physical Chemistry B, 2005, 109(42):19560-19562.

[9]

LIU S, YU J G, JARONIEC M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets[J]. Journal of the American Chemical Society, 2010, 132(34):11914-11916.

[10]

SELLONI A. Anatase shows its reactive side[J]. Nature Materials, 2008, 7(8):613-615.

[11]

YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453(7195):638-641.

[12]

YANG H G, LIU G, QIAO S Z, et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets[J]. Journal of the American Chemical Society, 2009, 131(11):4078-4083.

[13]

HAN X G, KUANG Q, JIN M S, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties[J]. Journal of the American Chemical Society, 2009, 131(9):3152-3153.

[14]

CHEN J S, TAN Y L, LI C M, et al. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage[J]. Journal of the American Chemical Society, 2010, 132(17):6124-6130.

[15]

QAID S M H, GHAITHAN H M, BAWAZIR H S, et al. Successful growth of TiO2 nanocrystals with {001} facets for solar cells[J]. Nanomaterials, 2023, 13(5):928.

[16]

REN L, MA S S, SHI Y, et al. Insights into the pivotal role of surface defects on anatase TiO2 nanosheets with exposed {001} facets for enhanced photocatalytic activity[J]. Materials Research Bulletin, 2023,164:112255.

[17]

LIAO S Q, LIU H, LU Y F, et al. Structural diversity design,four nucleation methods growth and mechanism of 3D hollow box TiO2 nanocrystals with a temperature-controlled high (001) crystal facets exposure ratio[J]. ACS Omega, 2024, 9(1):1695-1713.

[18]

FU C, LI F, WU Z F, et al. Traces of potassium induce restructuring of the anatase TiO2 (001)-(1 × 4) surface from a reactive to an inert structure[J]. The Journal of Physical Chemistry Letters, 2023, 14(40):8916-8921.

[19]

KUBIAK A, GRZEG RSKA A, GABAŁ A E, et al. Unraveling a novel microwave strategy to fabricate exposed {001}/{101} facets anatase nanocrystals:potential for use to the elimination of environmentally toxic metronidazole waste[J]. Materials Research Bulletin, 2023,167:112438.

[20]

SUN L M, YUAN Y Y, HE X X, et al. Hollow anatase TiO2 tetrakaidecahedral crystals with an active {001}/{110} redox interface toward high-performance photocatalytic activity[J]. Chemical Science, 2024, 15(2):692-700.

[21]

BASAVARAJAPPA P S, PATIL S B, GANGANAGAPPA N, et al. Recent progress in metal-doped TiO2,non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis[J]. International Journal of Hydrogen Energy, 2020, 45(13):7764-7778.

[22]

NUR A S M, SULTANA M, MONDAL A, et al. A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV-vis irradiation[J]. Journal of Water Process Engineering, 2022,47:102728.

[23]

WANG C, AO Y H, WANG P F, et al. Preparation,characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres[J]. Applied Surface Science, 2010, 257(1):227-231.

[24]

ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528):269-271.

[25]

TEE S Y, KONG J H, KOH J J, et al. Structurally and surficially activated TiO2 nanomaterials for photochemical reactions[J]. Nanoscale, 2024, 16(39):18165-18212.

[26]

FANG W J, YAN J W, WEI Z D, et al. Account of doping photocatalyst for water splitting[J]. Chinese Journal of Catalysis, 2024,60:1-24.

[27]

RUAN X W, LI S J, HUANG C X, et al. Catalyzing artificial photosynthesis with TiO2 heterostructures and hybrids:emerging trends in a classical yet contemporary photocatalyst[J]. Advanced Materials, 2024, 36(17):2305285.

[28]

AYAPPAN C, XING R M, ZHANG X T, et al. TiO2-based photocatalysts for emerging gaseous pollutants removal:from photocatalysts to reactors design[J]. Coordination Chemistry Reviews, 2024,515:215960.

[29]

NAKAMURA I, NEGISHI N, KUTSUNA S, et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal[J]. Journal of Molecular Catalysis A:Chemical, 2000, 161(1):205-212.

[30]

JUSTICIA I, ORDEJóN P, CANTO G, et al. Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis[J]. Advanced Materials, 2002, 14(19):1399-1402.

[31]

GONG X Q, SELLONI A, BATZILL M, et al. Steps on anatase TiO2 (101)[J]. Nature Materials, 2006, 5(8):665-670.

[32]

STRUNK J, VINING W C, BELL A T. A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48[J]. The Journal of Physical Chemistry C, 2010, 114(40):16937-16945.

[33]

LIU G, YANG H G, WANG X W, et al. Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} facets[J]. The Journal of Physical Chemistry C, 2009, 113(52):21784-21788.

[34]

THOMPSON T L, YATES J T. Surface science studies of the photoactivation of TiO2 new photochemical processes[J]. Chemical Reviews, 2006, 106(10):4428-4453.

[35]

FAN C Y, CHEN C, WANG J, et al. Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity[J]. Scientific Reports, 2015,5:11712.

[36]

SOURI D, TAHAN Z E. A new method for the determination of optical band gap and the nature of optical transitions in semiconductors[J]. Applied Physics B, 2015, 119 (2):273-279.

[37]

REYES-GARCIA E A, SUN Y P, RAFTERY D. Solid-state characterization of the nuclear and electronic environments in a boron-fluoride co-doped TiO2 visible-light photocatalyst[J]. The Journal of Physical Chemistry C, 2007, 111(45):17146-17154.

[38]

ZHAO W, MA W H, CHEN C C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation[J]. Journal of the American Chemical Society, 2004, 126(15):4782-4783.

[39]

CZOSKA A M, LIVRAGHI S, CHIESA M, et al. The nature of defects in fluorine-doped TiO2[J]. The Journal of Physical Chemistry C, 2008, 112(24):8951-8956.

[40]

WANG B, LEUNG M K H, LU X Y, et al. Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets[J]. Applied Energy, 2013,112:1190-1197.

[41]

LI J Y, LU N, QUAN X, et al. Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectrocatalytic properties[J]. Industrial & Engineering Chemistry Research, 2008, 47(11):3804-3808.

Funding

National Natural Science Foundation of China(81861138040)

PDF (10399KB)

48

Accesses

0

Citation

Detail

Sections
Recommended

/