Morphology Control of TiO2 Nanotubes towards High-Efficient Electrodes for Supercapacitor

Jin WANG , Guangbing CHEN , Chunrui WANG , Hui LI

Journal of Donghua University(English Edition) ›› 2024, Vol. 41 ›› Issue (4) : 377 -387.

PDF (13201KB)
Journal of Donghua University(English Edition) ›› 2024, Vol. 41 ›› Issue (4) :377 -387. DOI: 10.19884/j.1672-5220.202405010
Advanced Functional Materials
research-article

Morphology Control of TiO2 Nanotubes towards High-Efficient Electrodes for Supercapacitor

Author information +
History +
PDF (13201KB)

Abstract

This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO2 nanotubes and the electrochemical performance of modified TiO2 nanotubes. Humidity is a key factor for fabricating TiO2 nanotubes. When the relative humidity belows 70%,the TiO2 nanotubes can be successfully prepared. What's more, by changing the anodization voltage and time, the diameter and the length of TiO2 nanotubes can be adjusted.In addition, the TiO2 nanotubes are modified through electrochemical self-doping and loading Pt metal particles on the surface of the nanotubes, which promotes the performance of the supercapacitor. The sample anodized at 100 V for 3 h has a specific capacity of up to 2.576 mF/cm2 at a scan rate of 100 mV/s after self-doping, and its capacity retention rate still remains at 89.55% after 5 000 cycles, demonstrating excellent cycling stability. The Pt-modified sample has a specific capacity of up to 3.486 mF/cm2 at the same scan rate, exhibiting more outstanding electrochemical performance.

Keywords

TiO2 nanotube / anodization / conductivity / supercapacitor

Cite this article

Download citation ▾
Jin WANG, Guangbing CHEN, Chunrui WANG, Hui LI. Morphology Control of TiO2 Nanotubes towards High-Efficient Electrodes for Supercapacitor. Journal of Donghua University(English Edition), 2024, 41(4): 377-387 DOI:10.19884/j.1672-5220.202405010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.

[2]

ZHANG S L, PAN N. Supercapacitors performance evaluation[J]. Advanced Energy Materials, 2015, 5(6): 1401401.

[3]

XIANG R F, CHEN X Y, LIU Y, et al. Porous graphene-based electrodes for fiber-shaped supercapacitors with good electrical conductivity[J]. Journal of Donghua University(English Edition), 2023, 40(2): 134-141.

[4]

QIAN Y C, YANG X X, ZHANG J J, et al. Research progress in electrode materials for supercapacitor[J]. Journal of Donghua University(Natural Edition), 2022, 48(6): 1-13. (in Chinese)

[5]

RAJ C C, PRASANTH R. Review: advent of TiO2 nanotubes as supercapacitor electrode[J]. Journal of the Electrochemical Society, 2018, 165(9): E345.

[6]

BORENSTEIN A, HANNA O, ATTIAS R, et al. Carbon-based composite materials for supercapacitor electrodes: a review[J]. Journal of Materials Chemistry A, 2017, 5(25): 12653-12672.

[7]

SALARI M, ABOUTALEBI S H, KONSTANTINOV K, et al. A highly ordered titania nanotube array as a supercapacitor electrode[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(11): 5038-5041.

[8]

LIU S H, WANG Z Y, YU C, et al. A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life[J]. Advanced Materials, 2013, 25(25): 3462-3467.

[9]

GHICOV A, SCHMUKI P. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other selfaligned MOx structures[J]. Chemical Communications, 2009, 28(20): 2791-2808.

[10]

CHEN J S, CHEN C P, LIU J, et al. Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst[J]. Chemical Communications, 2011, 47(9): 2631-2633.

[11]

YE M D, LIU H Y, LIN C J, et al. Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates[J]. Small, 2013, 9(2): 312-321.

[12]

YANG P Y, ZHOU X Y, CAO G Z, et al. P3HT: PCBM polymer solar cells with TiO2 nanotube aggregates in the active layer[J]. Journal of Materials Chemistry, 2010, 20(13): 2612-2616.

[13]

FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.

[14]

SO S, HWANG I, SCHMUKI P. Hierarchical DSSC structures based on “single walled” TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%[J]. Energy & Environmental Science, 2015, 8(3): 849-854.

[15]

GUI Q F, YU D L, LI D D, et al. Efficient suppression of nanograss during porous anodic TiO2 nanotubes growth[J]. Applied Surface Science, 2014, 314(1): 505-509.

[16]

ZHOU H, ZHANG Y R. Electrochemically selfdoped TiO2 nanotube arrays for supercapacitors[J]. The Journal of Physical Chemistry C, 2014, 118(11): 5626-5636.

[17]

LAMBERTI A, PIRRI C F. TiO2 nanotube array as biocompatible electrode in view of implantable supercapacitors[J]. Journal of Energy Storage, 2016, 8(1): 193-197.

[18]

LU X H, WANG G M, ZHAI T, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors[J]. Nano Letters, 2012, 12(3): 1690-1696.

[19]

ANITHA V C, BANERJEE A N, DILLIP G R, et al. Nonstoichiometry-induced enhancement of electrochemical capacitance in anodic TiO2 nanotubes with controlled pore diameter[J]. Journal of Physical Chemistry C, 2016, 120(18): 9569-9580.

[20]

MACAK J M, SCHMUKI P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes[J]. Electrochimica Acta, 2006, 52(3): 1258-1264.

[21]

YORIYA S, PAULOSE M, VARGHESE O K, et al. Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes[J]. The Journal of Physical Chemistry C, 2007, 111(37): 13770-13776.

[22]

BERGER S, TSUCHIYA H, SCHMUKI P. Transition from nanopores to nanotubes: selfordered anodic oxide structures on titaniumaluminides[J]. Chemistry of Materials, 2008, 20(10): 3245-3247.

[23]

PARK H, KIM H G, CHOI W Y. Characterizations of highly ordered TiO2 nanotube arrays obtained by anodic oxidation[J]. Transactions on Electrical Electronic Materials, 2010, 11(3): 112-115.

[24]

OZKAN S, VALLE F, MAZARE A, et al. Optimized polymer electrolyte membrane fuel cell electrode using TiO2 nanotube arrays with welldefined spacing[J]. ACS Applied Nano Materials, 2020, 3(5): 4157-4170.

[25]

ZHU S S, ZHANG P P, CHANG L, et al. Photochemical fabrication of 3D hierarchical Mn3O4/H-TiO2 composite films with excellent electrochemical capacitance performance[J]. Physical Chemistry Chemical Physics, 2016, 18(12): 8529-8536.

[26]

SALARI M, KONSTANTINOV K, LIU H K. Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies[J]. Journal of Materials Chemistry, 2011, 21(13): 5128-5133.

[27]

PEI Z X, ZHU M S, HUANG Y, et al. Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in MnOx/TiO2 nanotube composite electrodes[J]. Nano Energy, 2016, 20(1): 254-263.

[28]

ZHANG J F, WANG Y, WU J J, et al. Remarkable supercapacitive performance of TiO2 nanotube arrays by introduction of oxygen vacancies[J]. Chemical Engineering Journal, 2017, 313(1): 1071-1081.

[29]

WU H, XU C, XU J, et al. Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment[J]. Nanotechnology, 2013, 24(45): 455401.

[30]

KIM C, KIM S, HONG S P, et al. Effect of doping level of colored TiO2 nanotube arrays fabricated by electrochemical self-doping on electrochemical properties[J]. Physical Chemistry Chemical Physics, 2016, 18(21): 14370-14375.

[31]

MOHAMED A E R, ROHANI S. Modified TiO2 nanotube arrays(TNTAs): progressive strategies towards visible light responsive photoanode, a review[J]. Energy & Environmental Science, 2011, 4(4): 1065-1086.

[32]

CHONG B, YU D L, JIN R, et al. Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions[J]. Nanotechnology, 2015, 26(14): 145603.

[33]

SU Z X, ZHOU W Z. Formation mechanism of porous anodic aluminium and titanium oxides[J]. Advanced Materials, 2008, 20(19): 3663-3667.

[34]

REGONINI D, BOWEN C R, JAROENWORALUCK A, et al. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes[J]. Materials Science and Engineering: R: Reports, 2013, 74(12): 377-406.

[35]

ALBU S P, TSUCHIYA H, FUJIMOTO S, et al. TiO2 nanotubes-annealing effects on detailed morphology and structure[J]. European Journal of Inorganic Chemistry, 2010, 2010(27): 4351-4356.

[36]

LEE D Y, JUNG J Y, JUNG M J, et al. Hierarchical porous carbon fibers prepared using a SiO2 template for high-performance EDLCs[J]. Chemical Engineering Journal, 2015, 263(1): 62-70.

[37]

ZHANG Y L, LI X, LI Z H, et al. Evaluation of electrochemical performance of supercapacitors from equivalent circuits through cyclic voltammetry and galvanostatic charge/discharge[J]. Journal of Energy Storage, 2024, 86(1): 111122.

[38]

LI H, CHEN Z H, TSANG C K, et al. Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts[J]. Journal of Materials Chemistry A, 2014, 2(1): 229-236.

[39]

SHAO J J, ZHOU X Y, LIU Q, et al. Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO2 @MnO2 core/shell nanostructures for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(11): 6168-7176.

[40]

SIM C K, MAJID S R, MAHMOOD N Z. ZnSnO3/mesoporous biocarbon composite towards sustainable electrode material for energy storage device[J]. Microchemical Journal, 2021, 164(1): 105968.

[41]

PHOLAUYPHON W, BULAKHE R N, PRANEERAD J, et al. Ultrahigh-performance titanium dioxide-based supercapacitors using sodium polyacrylate-derived carbon dots as simultaneous and synergistic electrode/electrolyte additives[J]. Electrochimica Acta, 2021, 390(1): 138805.

[42]

SWAMINATHAN J, RAVICHANDRAN S. Insights into the electrocatalytic behavior of defect-centered reduced titania(TiO1.23)[J]. The Journal of Physical Chemistry C, 2018, 122(3): 1670-1680.

[43]

HUANG Z H, LIU T Y, SONG Y, et al. Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon[J]. Nanoscale, 2017, 9(35): 13119-13127.

Funding

National Natural Science Foundation of China(12004070)

PDF (13201KB)

79

Accesses

0

Citation

Detail

Sections
Recommended

/