PDF
(11047KB)
Abstract
Highly reduced molybdenum red(MR) clusters have emerged as a new type of polyoxomolybdates(POMos) and showed great potential as electron/proton reservoirs for energy conversion and storage, as well as for catalysis. However, the limited structural diversity of MR clusters significantly hinders further exploration of their potential as functional materials. Herein, we describe the synthesis of a novel highly reduced MR cluster {Mo49}(compound 1) based on rational assembly of a variety of basic building blocks(BBs). In addition to the well-established BBs found in the family of MR clusters, the unique tetrahedral {MoVI4} BB plays a key role in directing the assembly to afford trigonal pyramid-like structure of compound 1, which consists of 49 Mo and 148 O atoms with a high reduction degree of 73%. Moreover, at 80 ℃ and 98% relative humidity(RH), the pellet sample of compound 1 displays good proton conductivity of 7.88×10-3 S/cm owing to the efficient hydrogen-bonded network built from the surface oxygen atoms, protons and guest water molecules. This research offers new insights into the assembly and synthesis of MR clusters through a BB strategy and manifests their significant potential for advanced applications.
Keywords
polyoxomolybdate(POMo)
/
highly reduced cluster
/
building block(BB)
/
proton conductivity
Cite this article
Download citation ▾
Duidui ZHANG, Zeyu CHEN, Rongqing TANG, Tengfei GONG, Zhiyu SHAO, Weimin XUAN.
Design and Synthesis of Molybdenum Red Cluster { Mo49 } by Building Block-Directed Assembly for Proton Conduction.
Journal of Donghua University(English Edition), 2025, 42(3): 230-241 DOI:10.19884/j.1672-5220.202405004
| [1] |
LONG D L, TSUNASHIMA R, CRONIN L. Polyoxometalates:building blocks for functional nanoscale systems[J]. Angewandte Chemie International Edition, 2010, 49(10):1736-1758.
|
| [2] |
LIU Y F, HU Q L, CHEN X J, et al. Two sandwich-type uranyl-containing polytungstates catalyze aerobic synthesis of benzimidazoles[J]. Rare Metals, 2024, 43(3):1316-1322.
|
| [3] |
LIU Y F, ZENG G D, CHENG Y T, et al. A H4SiW12O40-catalyzed three-component tandem reaction for the synthesis of 3,3-disubstituted isoindolinones[J]. Chinese Chemical Letters, 2024, 35(1):108480.
|
| [4] |
DING J H, LIU Y F, TIAN Z T, et al. Uranyl-silicotungstate-containing hybrid building units {α-SiW9} and {γ-SiW10} with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2(1H)-ones[J]. Inorganic Chemistry Frontiers, 2023, 10(11):3195-3201.
|
| [5] |
LI K, LIU Y F, LIN X L, et al. Copper-containing polyoxometalate-based metal-organic frameworks as heterogeneous catalysts for the synthesis of N-heterocycles[J]. Inorganic Chemistry, 2022, 61(18):6934-6942.
|
| [6] |
GUMEROVA N I, ROMPEL A. Synthesis,structures and applications of electron-rich polyoxometalates[J]. Nature Reviews Chemistry, 2018,2:112.
|
| [7] |
MONAKHOV K Y, BENSCH W, KÖGERLER P.Semimetal-functionalised polyoxovanadates[J]. Chemical Society Reviews, 2015, 44(23):8443-8483.
|
| [8] |
WANG S S, YANG G Y. Recent advances in polyoxometalate-catalyzed reactions[J]. Chemical Reviews, 2015, 115(11):4893-4962.
|
| [9] |
NISHIMOTO Y, YOKOGAWA D, YOSHIKAWA H, et al. Super-reduced polyoxometalates:excellent molecular cluster battery components and semipermeable molecular capacitors[J]. Journal of the American Chemical Society, 2014, 136(25):9042-9052.
|
| [10] |
XUAN W M, POW R, ZHENG Q, et al. Ligand-directed template assembly for the construction of gigantic molybdenum blue wheels[J]. Angewandte Chemie International Edition, 2019, 58(32):10867-10872.
|
| [11] |
RIBÓE G, BELL N L, XUAN W M, et al.Synthesis,assembly,and sizing of neutral,lanthanide substituted molybdenum blue wheels{Mo90Ln10}[J]. Journal of the American Chemical Society, 2020, 142(41):17508-17514.
|
| [12] |
LI J, ZHANG D, CHI Y N, et al. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules[J]. Polyoxometalates, 2022, 1(2):9140012.
|
| [13] |
LIU J, JIANG N, LIN J M, et al. Structural evolution of giant polyoxometalate:from “keplerate” to “lantern” type Mo132 for improved oxidation catalysis[J]. Angewandte Chemie International Edition, 2023, 62(33):e202304728.
|
| [14] |
REZAEIFARD A, HADDAD R, JAFARPOUR M, et al. {Mo132} nanoball as an efficient and cost-effective catalyst for sustainable oxidation of sulfides and olefins with hydrogen peroxide[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(4):942-950.
|
| [15] |
LI X X, JI T, GAO J Y, et al. An unprecedented fully reduced {MoV60} polyoxometalate:from an all-inorganic molecular light-absorber model to improved photoelectronic performance[J]. Chemical Science, 2022, 13(16):4573-4580.
|
| [16] |
RIBó E G, BELL N L, LONG D L, et al. Engineering highly reduced molybdenum polyoxometalates via the incorporation of d and f block metal ions[J]. Angewandte Chemie International Edition, 2022, 61(21):e202201672.
|
| [17] |
ZHOU D X, LI B B, ZHAO Q X, et al. Solvent-modulated assembly of peptide and cerium functionalized gigantic {Mo120Ce6}2 dimers for high-efficiency photocatalytic oxidation[J]. Inorganic Chemistry Frontiers, 2024, 11(8):2355-2364.
|
| [18] |
ZANG D J, WANG H Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction[J]. Polyoxometalates, 2022, 1(1):9140006.
|
| [19] |
LIU Y F, LIN X L, MING B M, et al. Three polyoxometalate-based Ag-organic compounds as heterogeneous catalysts for the synthesis of benzimidazoles[J]. Inorganic Chemistry, 2024, 63(12):5681-5688.
|
| [20] |
YANG Y, ZHAO Q X, XUAN W M, et al. Photoactive naphthalene diimide functionalized titanium-oxo clusters with high photoelectrochemical responses[J]. Journal of Donghua University (English Edition), 2023, 40(6):590-599.
|
| [21] |
LIAO L R, ZHENG D C, OU P X, et al. π-conjugated chromophore functionalized high-nuclearity titanium-oxo clusters containing structural unit of anatase for photocatalytic selective oxidation of sulfides[J]. Rare Metals, 2024, 43(4):1736-1746.
|
| [22] |
WANG H Y, LI S R, WANG X, et al. Enhanced proton conductivity of Mo154-based porous inorganic framework[J]. Science China Chemistry, 2021, 64(6):959-963.
|
| [23] |
LI X X, LI C H, HOU M J, et al. Ce-mediated molecular tailoring on gigantic polyoxometalate {Mo132} into half-closed {Ce11Mo96} for high proton conduction[J]. Nature Communications, 2023, 14(1):5025.
|
| [24] |
LIU W J, DONG L Z, LI R H, et al. Different protonic species affecting proton conductivity in hollow spherelike polyoxometalates[J]. ACS Applied Materials & Interfaces, 2019, 11(7):7030-7036.
|
| [25] |
JI F, JIANG F Y, LUO H W, et al. Hybrid membrane of sulfonated poly(aryl ether ketone sulfone) modified by molybdenum clusters with enhanced proton conductivity[J]. Small, 2024, 20(33):2312209.
|
| [26] |
ZHANG H, YU K, LI J S, et al. The highest connected pure inorganic 3D framework assembled by {P4Mo6} cluster and alkali metal potassium[J]. RSC Advances, 2015, 5(5):3552-3559.
|
| [27] |
YIN X Y, BI H X, SONG H, et al. Photoactive hourglass-type M{P4Mo6}2 networks for efficient removal of hexavalent chromium[J]. Polyoxometalates, 2023, 2(2):9140027.
|
| [28] |
GAO Z X, SUN S, LI B, et al. Design and synthesis of phosphomolybdate coordination compounds based on {P4Mo6} structural units and their proton conductivity[J]. Tungsten, 2023, 5(1):67-74.
|
| [29] |
LIN J M, LI N, YANG S P, et al. Self-assembly of giant Mo240 hollow opening dodecahedra[J]. Journal of the American Chemical Society, 2020, 142(32):13982-13988.
|
| [30] |
MÜLLER A, BECKMANN E, BÖGGE H, et al. Inorganic chemistry goes protein size:a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking[J]. Angewandte Chemie International Edition, 2002, 41(7):1162-1167.
|
| [31] |
MÜLLER A, KRICKEMEYER E, BÖGGE H, et al. Formation of a ring-shaped reduced “metal oxide” with the simple composition [(MoO3)176(H2O)80H32[J]. Angewandte Chemie International Edition, 1998, 37(9):1220-1223.
|
| [32] |
MÜ LLER A, KRICKEMEYER E, MEYER J, et al. Mo154(NO)14O420(OH)28(H2O)70](25±5)-:a water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24 000[J]. Angewandte Chemie International Edition in English, 1995, 34(19):2122-2124.
|
| [33] |
MÜ LLER A, KRICKEMEYER E, B Ö GGE H, et al. Organizational forms of matter:an inorganic super fullerene and keplerate based on molybdenum oxide[J]. Angewandte Chemie International Edition, 1998, 37(24):3359-3363.
|
| [34] |
WANG Y R, HUANG Q, HE C T, et al. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2[J]. Nature Communications, 2018, 9(1):4466.
|
| [35] |
BARMAN S, SREEJITH S S, GARAI S, et al. Selective photocatalytic carbon dioxide reduction by a reduced molybdenum-based polyoxometalate catalyst[J]. ChemPhotoChem, 2019, 3(2):93-100.
|
| [36] |
SONG Y F. Polyoxometalate-based assemblies and functional materials[M]. Cham: Springer International Publishing, 2018.
|
| [37] |
POPE M T, MÜ LLER A. Polyoxometalate chemistry from topology via self-assembly to applications[M]. Cham: Springer Netherlands, 2001.
|
| [38] |
LAI Q S, LI X X, ZHENG S T. All-inorganic POM cages and their assembly:a review[J]. Coordination Chemistry Reviews, 2023,482:215077.
|
| [39] |
JIANG H, ZHANG W Q, HOU B, et al. Planar chiral [2.2] paracyclophane-based Zr(IV) metal-organic frameworks[J]. CCS Chemistry, 2023, 5(7):1635-1643.
|
| [40] |
LIU J C, ZHAO J W, STREB C, et al. Recent advances on high-nuclear polyoxometalate clusters[J]. Coordination Chemistry Reviews, 2022,471:214734.
|
| [41] |
COLLIARD I, BROWN J C, FAST D B, et al. Snapshots of Ce70 toroid assembly from solids and solution[J]. Journal of the American Chemical Society, 2021, 143(25):9612-9621.
|
| [42] |
ZHU Z K, ZHANG J, CONG Y C, et al. Two giant calixarene-like polyoxoniobate nanocups{Cu12Nb120}and{Cd16Nb128}built from mixed macrocyclic cluster motifs[J]. Angewandte Chemie International Edition, 2022, 61(7):e202113381.
|
| [43] |
ZHANG H L, LI A, LI K, et al. Ultrafiltration separation of Am(VI)-polyoxometalate from lanthanides[J]. Nature, 2023, 616(7957):482-487.
|
| [44] |
LI B B, LAN Y X, SU H Y, et al. {Mo4}-directed structural evolution of highly reduced molybdenum red clusters for efficient proton conduction[J]. Dalton Transactions, 2024, 53(14):6184-6189.
|
| [45] |
SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallographica Section C,Structural Chemistry, 2015, 71(part 1):3-8.
|
| [46] |
SHELDRICK G M. SHELXT-integrated space-group and crystal-structure determination[J]. Acta Crystallographica A,Fundation and Advances, 2015, 71(part 1):3-8.
|
| [47] |
DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2:a complete structure solution,refinement and analysis program[J]. Journal of Applied Crystallography, 2009, 42(2):339-341.
|
| [48] |
REES B, JENNER L, YUSUPOV M. Bulk-solvent correction in large macromolecular structures[J]. Acta Crystallographica Section D, 2005, 61(9):1299-1301.
|
| [49] |
GAGNÉ O C, HAWTHORNE F C.Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen[J]. Acta Crystallographica Section B,Structural Science,Crystal Engineering and Materials, 2015, 71(5):562-578.
|
| [50] |
KHAN M I, CHEN Q, SALTA J, et al. Retention of structural cores in the synthesis of high-nuclearity polyoxoalkoxomolybdate clusters encapsulating [Na(H2O)3]+ and [MoO3] moieties.hydrothermal syntheses and structures of (NH4)7[NaH12Mo16O52]·4H2O and (Me3NH)4K2[H14Mo16O52]·8H2O and their structural relationships to the class of superclusters [XHnMo42O109{(OCH2)3CR}7]m- (X=Na(H2O)3+:n=13,m=9;n=15,m=7.X= MoO3:n=14,m=9;n=13,m=10)[J]. Inorganic Chemistry, 1996, 35(7):1880-1901.
|
| [51] |
YAMASE T, ISHIKAWA E. Photochemical self-assembly reaction of β-[Mo8O26]4- to mixed-valence cluster [Mo37O112]26- in aqueous media[J]. Langmuir, 2000, 16(23):9023-9030.
|
| [52] |
ATOVMYAN L O, KRASOCHKA O N. X-ray diffraction investigation of the crystals of the octamolybdate (NH4)4Mo8O26· 4H2O[J]. Journal of Structural Chemistry, 1972, 13(2):319-320.
|
| [53] |
XUAN W M, POW R, LONG D L, et al. Exploring the molecular growth of two gigantic half-closed polyoxometalate clusters{Mo180}and{Mo130Ce6}[J]. Angewandte Chemie International Edition, 2017, 56(33):9727-9731.
|
| [54] |
FANG X K, K Ö GERLER P, FURUKAWA Y, et al. Molecular growth of a core-shell polyoxometalate[J]. Angewandte Chemie International Edition, 2011, 50(22):5212-5216.
|
| [55] |
MÜLLER A, SHAH S Q N, B Ö GGE H, et al. Molecular growth from a Mo176 to a Mo248 cluster[J]. Nature, 1999,397:48-50.
|
| [56] |
OGIWARA N, IWANO T, ITO T, et al. Proton conduction in ionic crystals based on polyoxometalates[J]. Coordination Chemistry Reviews, 2022,462:214524.
|
| [57] |
MENG X, WANG H N, SONG S Y, et al. Proton-conducting crystalline porous materials[J]. Chemical Society Reviews, 2017, 46(2):464-480.
|
| [58] |
SAHOO R, PAL S C, DAS M C. Solid-state proton conduction driven by coordinated water molecules in metal-organic frameworks and coordination polymers[J]. ACS Energy Letters, 2022, 7(12):4490-4500.
|
| [59] |
CHAND S, ELAHI S M, PAL A, et al. Metal-organic frameworks and other crystalline materials for ultrahigh superprotonic conductivities of 10-2 S cm-1 or higher[J]. Chemistry—A European Journal, 2019, 25(25):6259-6269.
|
| [60] |
LIU J C, HAN Q, CHEN L J, et al. Aggregation of giant cerium-bismuth tungstate clusters into a 3D porous framework with high proton conductivity[J]. Angewandte Chemie International Edition, 2018, 130(28):8552-8556.
|
| [61] |
ZHU M H, IWANO T, TAN M J, et al. Macrocyclic polyoxometalates:selective polyanion binding and ultrahigh proton conduction[J]. Angewandte Chemie International Edition, 2022, 61(15):e202200666.
|
| [62] |
CAO J P, SHEN F C, LUO X M, et al. Proton conductivity resulting from different triazole-based ligands in two new bifunctional decavanadates[J]. RSC Advances, 2018, 8(33):18560-18566.
|
| [63] |
LAI R D, ZHANG J, LI X X, et al. Assemblies of increasingly large Ln-containing polyoxoniobates and intermolecular aggregation-disaggregation interconversions[J]. Journal of the American Chemical Society, 2022, 144(42):19603-19610.
|
| [64] |
LIN Y D, ZHU Z K, GE R, et al. Proton conductive polyoxoniobate frameworks constructed from nanoscale {Nb68O200} cages[J]. Chemical Communications, 2021, 57(38):4702-4705.
|
| [65] |
KIM S, JOARDER B, HURD J A, et al. Achieving superprotonic conduction in metal-organic frameworks through iterative design advances[J]. Journal of the American Chemical Society, 2018, 140(3):1077-1082.
|
Funding
National Natural Science Foundation of China(92161111)
National Natural Science Foundation of China(21901038)
Program for Professor of Special Appointment(Eastern Scholar) at Shanghai Institutions of Higher Learning)
Program for Professor of Special Appointment(China)
International Cooperation Fund of Science and Technology Commission of Shanghai Municipality, China(21130750100)