PDF
(9668KB)
Abstract
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed. In the hybrid compensation scheme, the input rate-dependent hysteresis characteristics of the PEAs are compensated. The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model, while the feedback controller is a proportion integration differentiation(PID)controller. In the proposed inverse model, an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping, and the wiping-out, rate-dependent and continuous properties of the RAIO are analyzed in theories. Based on the EIS method, a hysteresis neural network inverse model, namely the dynamic back propagation neural network(DBPNN)model, is established. Moreover, a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis. Finally, the proposed method, the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform. Experimental results show that the proposed method has obvious superiorities in the performance of the system.
Keywords
hybrid control
/
input rate-dependent hysteresis
/
inverse model
/
neural network
/
piezoelectric ceramic actuator
Cite this article
Download citation ▾
Ruili DONG, Yonghong TAN, Jiajia HOU, Bangsheng ZHENG.
A Hybrid Compensation Scheme for the Input Rate-Dependent Hysteresis of the Piezoelectric Ceramic Actuators.
Journal of Donghua University(English Edition), 2024, 41(4): 436-446 DOI:10.19884/j.1672-5220.202405002
| [1] |
AKDOGAN E K, ALLAHVERDI M, SAFARI A. Piezoelectric composites for sensor and actuator applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(5): 746-775.
|
| [2] |
BOUCHILLOUX P, CLAEYSSEN F, LELETTY R. Amplified piezoelectric actuators: from aerospace to underwater applications[C]//SPIE Proceedings, Smart Structures and Materials 2004:Industrial and Commercial Applications of Smart Structures Technologies. Bellingham: SPIE, 2004, 5388: 143-154.
|
| [3] |
HAUPT B J, PELLING A E, HORTON M A. Integrated confocal and scanning probe microscopy for biomedical research[J]. The Scientific World Journal, 2006, 6: 1609-1618.
|
| [4] |
AGGOGERI F, AL-BENDER F, BRUNNER B, et al. Design of piezo-based AVC system for machine tool applications[J]. Mechanical Systems and Signal Processing, 2013, 36(1): 53-65.
|
| [5] |
ZHANG Q, DONG Y C, PENG Y, et al. Asymmetric Bouc-Wen hysteresis modeling and inverse compensation for piezoelectric actuator via a genetic algorithm-based particle swarm optimization identification algorithm[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(8): 1263-1275.
|
| [6] |
LI Z, SHAN J J, GABBERT U. Inverse compensation of hysteresis using Krasnoselskii-Pokrovskii model[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 966-971.
|
| [7] |
RYBA Ł, VODA A, BESANÇON G. Experimental comparison of disturbance observer and inverse-based hysteresis compensation in 3D nanopositioning piezoactuation[J]. Sensors and Actuators A: Physical, 2015, 236: 190-205.
|
| [8] |
RAAFAT S M, AKMELIAWATI R, ABDULLJABAAR I. Robust H∞ controller for high precision positioning system, design, analysis, and implementation[J]. Intelligent Control and Automation, 2012, 3(3): 262-273.
|
| [9] |
LIAW H C, SHIRINZADEH B, SMITH J. Enhanced sliding mode motion tracking control of piezoelectric actuators[J]. Sensors and Actuators A: Physical, 2007, 138(1): 194-202.
|
| [10] |
PENG J Y, CHEN X B. Integrated PID-based sliding mode state estimation and control for piezoelectric actuators[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 88-99.
|
| [11] |
GU G Y, ZHU L M. Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation[J]. Sensors and Actuators A: Physical, 2013, 197: 76-87.
|
| [12] |
WANG G, CHEN G Q, BAI F Z. High-speed and precision control of a piezoelectric positioner with hysteresis, resonance and disturbance compensation[J]. Microsystem Technologies, 2016, 22(10): 2499-2509.
|
| [13] |
CHEN Y S, WANG Z, WANG H, et al. Adaptive inverse of piezoelectric bimorph actuator with Prandtl-Ishlinskii model for wide-band tracking control[J]. Journal of Physics: Conference Series, 2020, 1633(1): 012025.
|
| [14] |
TAO Y D, LI H X, ZHU L M. Rate-dependent hysteresis modeling and compensation of piezoelectric actuators using Gaussian process[J]. Sensors and Actuators A: Physical, 2019, 295: 357-365.
|
| [15] |
MAO X F, WANG Y J, LIU X D, et al. A hybrid feedforward-feedback hysteresis compensator in piezoelectric actuators based on least-squares support vector machine[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5704-5711.
|
| [16] |
MENG D, XIA P Q, LANG K, et al. Neural network based hysteresis compensation of piezoelectric stack actuator driven active control of helicopter vibration[J]. Sensors and Actuators A: Physical, 2020, 302: 111809.
|
| [17] |
GORBET R B. Control of hysteretic systems with preisach representations[D]. Ontario: University of Waterloo, 1997.
|
| [18] |
DONG R L, TAN Y H, CHEN H, et al. A neural networks based model for rate-dependent hysteresis for piezoceramic actuators[J]. Sensors and Actuators A: Physical, 2008, 143(2): 370-376.
|
| [19] |
MARQUARDT D W. An algorithm for leastsquares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441.
|
| [20] |
FU X G, LI S H, FAIRBANK M, et al. Training recurrent neural networks with the levenberg-marquardt algorithm for optimal control of a grid-connected converter[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 1900-1912.
|
| [21] |
YANG M J, LI C X, GU G Y, et al. Modeling and compensating the dynamic hysteresis of piezoelectric actuators via a modified ratedependent Prandtl-Ishlinskii model[J]. Smart Materials and Structures, 2015, 24(12): 125006.
|
Funding
National Natural Science Foundation of China(62171285)
National Natural Science Foundation of China(61971120)
National Natural Science Foundation of China(62327807)