Mesoporous Carbon Nanofibers Loaded with Ordered PtFe Alloy Nanoparticles for Electrocatalytic Nitrate Reduction to Ammonia

Meng XIE , Wei LUO , Pengpeng QIU

Journal of Donghua University(English Edition) ›› 2024, Vol. 41 ›› Issue (4) : 365 -376.

PDF (20161KB)
Journal of Donghua University(English Edition) ›› 2024, Vol. 41 ›› Issue (4) :365 -376. DOI: 10.19884/j.1672-5220.202404012
Advanced Functional Materials
research-article

Mesoporous Carbon Nanofibers Loaded with Ordered PtFe Alloy Nanoparticles for Electrocatalytic Nitrate Reduction to Ammonia

Author information +
History +
PDF (20161KB)

Abstract

Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_3RR)to generate ammonia(NH3). In this study, we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template. When employed as electrocatalysts, O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_3RR compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs). Notably, the NH3 production performance was particularly outstanding, with a maximum NH3 yield of up to 959.6 μmol/(h·cm2).Furthermore, the Faraday efficiency(FE)was even 88. 0% at -0.4 V vs. reversible hydrogen electrode(RHE). This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO3RR.

Keywords

ordered PtFe alloy / mesoporous carbon nanofiber(mCNF) / nitrate reduction reaction(NO3RR) / ammonia(NH3)production reaction

Cite this article

Download citation ▾
Meng XIE, Wei LUO, Pengpeng QIU. Mesoporous Carbon Nanofibers Loaded with Ordered PtFe Alloy Nanoparticles for Electrocatalytic Nitrate Reduction to Ammonia. Journal of Donghua University(English Edition), 2024, 41(4): 365-376 DOI:10.19884/j.1672-5220.202404012

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZHANG Y Q, LIU H W, ZHAO S Y, et al. Insights into the dynamic evolution of defects in electrocatalysts[J]. Advanced Materials, 2023, 35(9): e2209680.

[2]

LUO L H, WANG M L, CUI Y, et al. Surface iron species in palladium-iron intermetallic nanocrystals that promote and stabilize CO2 methanation[J]. Angewandte Chemie International Edition, 2020, 59(34): 14434-14442.

[3]

LI X, HE Y H, CHENG S B, et al. Atomic structure evolution of Pt-Co binary catalysts: single metal sites versus intermetallic nanocrystals[J]. Advanced Materials, 2021, 33(48): e2106371.

[4]

PU Z H, LIU T T, ZHANG G X, et al. General synthesis of transition-metal-based carbon-group intermetallic catalysts for efficient electrocatalytic hydrogen evolution in wide pH range[J]. Advanced Energy Materials, 2022, 12(20): 2200293.

[5]

GAO Q, PILLAI H S, HUANG Y, et al. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights[J]. Nature Communications, 2022, 13: 2338.

[6]

ZHANG R, HONG H, LIU X H, et al. Molecular engineering of a metal-organic polymer for enhanced electrochemical nitrate-to-ammonia conversion and zinc nitrate batteries[J]. Angewandte Chemie International Edition, 2023, 62(48): e202309930.

[7]

ZHANG S, WU J H, ZHENG M T, et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia[J]. Nature Communications, 2023, 14: 3634.

[8]

WANG Y Z, ZHANG X Y, HE H J, et al. Ordered mesoporous high-entropy intermetallics for efficient oxygen reduction electrocatalysis[J]. Advanced Energy Materials, 2024, 14(8): 2303923.

[9]

ZHOU Y Y, DUAN R Z, LI H, et al. Boosting electrocatalytic nitrate reduction to ammonia via promoting water dissociation[J]. ACS Catalysis, 2023, 13(16): 10846-10854.

[10]

BUSCHOW K H J, VAN ENGEN P G, JONGEBREUR R. Magneto-optical properties of metallic ferromagnetic materials[J]. Journal of Magnetism and Magnetic Materials, 1983, 38(1): 0304885383900975.

[11]

ASHIDA Y, ARASHIBA K, NAKAJIMA K, et al. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water[J]. Nature, 2019, 568: 536-540.

[12]

QI C H, YANG H Y, SUN Z Q, et al. Modulating electronic structures of iron clusters through orbital rehybridization by adjacent single copper sites for efficient oxygen reduction[J]. Angewandte Chemie International Edition, 2023, 62(39): e202308344.

[13]

GAO W S, XIE K F, XIE J, et al. Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia[J]. Advanced Materials, 2023, 35(19): e2202952.

[14]

YANG C L, WANG L N, YIN P, et al. Sulfuranchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells[J]. Science, 2021, 374(6566): 459-464.

[15]

LUO Y, ZHANG B P, LIU C C, et al. Sulfonemodified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction[J]. Angewandte Chemie International Edition, 2023, 62(26): e202305355.

[16]

ZHU G H, JIANG Y, YANG H Y, et al. Constructing structurally ordered high-entropy alloy nanoparticles on nitrogen-rich mesoporous carbon nanosheets for high-performance oxygen reduction[J]. Advanced Materials, 2022, 34(15): e2110128.

[17]

CHEN W, LUO S P, SUN M Z, et al. Hexagonal PtBi intermetallic inlaid with submonolayer Pb oxyhydroxide boosts methanol oxidation[J]. Small, 2022, 18(14): e2107803.

[18]

HE Y T, YANG X X, LI Y S, et al. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries[J]. ACS Catalysis, 2022, 12(2): 1216-1227.

[19]

WANG W J, MENG Y, ZHANG Y X, et al. Electrically switchable polarization in Bi2O2 Se ferroelectric semiconductors[J]. Advanced Materials, 2023, 35(12): e2210854.

[20]

ZHANG H, WANG C Q, LUO H X, et al. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen[J]. Angewandte Chemie International Edition, 2023, 62(5): e202217071.

[21]

WU Z Y, KARAMAD M, YONG X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst[J]. Nature Communications, 2021, 12: 2870.

[22]

TIAN J J, XUE Q F, YAO Q, et al. Inorganic halide perovskite solar cells: progress and challenges[J]. Advanced Energy Materials, 2020, 10(23): 2000183.

[23]

ZHANG Y, ZHAO Q, DANIL B, et al. Oxygen-vacancy-induced formation of Pt-based intermetallics on MXene with strong metalsupport interactions for efficient oxygen reduction reaction[J]. Advanced Materials, 2024: 2400198.

[24]

ZHU X H, LIU M M, BU F X, et al. Ordered mesoporous nanofibers mimicking vascular bundles for lithium metal batteries[J]. National Science Review, 2024, 11(5): nwae081.

[25]

ZHAO X Y, JIANG Y Z, WANG M F, et al. Optimizing intermediate adsorption via heteroatom ensemble effect over RuFe bimetallic alloy for enhanced nitrate electroreduction to ammonia[J]. Advanced Energy Materials, 2023, 13(31): 2301409.

[26]

WANG Y T, ZHOU W, JIA R R, et al. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia[J]. Angewandte Chemie International Edition, 2020, 59(13): 5350-5354.

[27]

YANG X Y, DENG Y, YANG H T, et al. Functionalization of mesoporous semiconductor metal oxides for gas sensing: recent advances and emerging challenges[J]. Advanced Science, 2022, 10(1): e2204810.

[28]

WANG H M, HUANG J J, CAI J M, et al. In situ/operando methods for understanding electrocatalytic nitrate reduction reaction[J]. Small Methods, 2023, 7(7): e2300169.

[29]

DENG Z Q, LIANG J, LIU Q, et al. Highefficiency ammonia electrosynthesis on selfsupported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate[J]. Chemical Engineering Journal, 2022, 435: 135104.

[30]

DU F, LI J S, WANG C H, et al. Active sitesrich layered double hydroxide for nitrate-toammonia production with high selectivity and stability[J]. Chemical Engineering Journal, 2022, 434: 134641.

[31]

HU T, WANG C H, WANG M T, et al. Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts[J]. ACS Catalysis, 2021, 11(23): 14417-14427.

[32]

HAN Y, ZHANG X Y, CAI W W, et al. Facetcontrolled palladium nanocrystalline for enhanced nitrate reduction towards ammonia[J]. Journal of Colloid and Interface Science, 2021, 600: 620-628.

[33]

GUO Y, ZHANG R, ZHANG S C, et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries[J]. Energy & Environmental Science, 2021, 14(7): 3938-3944.

[34]

XU Y, REN K L, REN T L, et al. Ultralowcontent Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2 Ooctahedra for enhanced electrocatalytic nitrate reduction to ammonia[J]. Applied Catalysis B: Environmental, 2022, 306: 121094.

[35]

REZAII N, MAHOWALD K, RYSKIN R, et al. A syntax-lexicon trade-off in language production[J]. Proceedings of the National Academy of Sciences, 2022, 119(25): e2120203119.

[36]

JONOUSH Z A, REZAEE A, GHAFFARINEJAD A. Electrocatalytic nitrate reduction using Fe0/Fe3O4 nanoparticles immobilized on nickel foam: selectivity and energy consumption studies[J]. Journal of Cleaner Production, 2020, 242: 118569.

[37]

MATTAROZZI L, CATTARIN S, COMISSO N, et al. Electrodeposition of compact Ag-Ni films from concentrated chloride baths and their test in the reduction of nitrate in alkali[J]. Electrochimica Acta, 2020, 346: 136240.

[38]

XING CY, XUE Y R, ZHENG X C, et al. Highly selective electrocatalytic olefin hydrogenation in aqueous solution[J]. Angewandte Chemie International Edition, 2023, 62(41): e202310722.

Funding

National Natural Science Foundation of China(52225204)

National Natural Science Foundation of China(52173233)

National Natural Science Foundation of China(52202085)

Innovation Program of Shanghai Municipal Education Commission, China(2021-01-07-00-03-E00109)

Natural Science Foundation of Shanghai, China(23ZR1479200)

Shanghai Education Development Foundation and Shanghai Municipal Education Commission, China(20SG33)

Fundamental Research Funds for the Central Universities, China(2232024Y-01)

DHU Distinguished Young Professor Program, China(LZA2022001)

DHU Distinguished Young Professor Program, China(LZB2023002)

PDF (20161KB)

90

Accesses

0

Citation

Detail

Sections
Recommended

/