Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_3RR)to generate ammonia(NH3). In this study, we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template. When employed as electrocatalysts, O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_3RR compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs). Notably, the NH3 production performance was particularly outstanding, with a maximum NH3 yield of up to 959.6 μmol/(h·cm2).Furthermore, the Faraday efficiency(FE)was even 88. 0% at -0.4 V vs. reversible hydrogen electrode(RHE). This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO3RR.
| [1] |
ZHANG Y Q, LIU H W, ZHAO S Y, et al. Insights into the dynamic evolution of defects in electrocatalysts[J]. Advanced Materials, 2023, 35(9): e2209680.
|
| [2] |
LUO L H, WANG M L, CUI Y, et al. Surface iron species in palladium-iron intermetallic nanocrystals that promote and stabilize CO2 methanation[J]. Angewandte Chemie International Edition, 2020, 59(34): 14434-14442.
|
| [3] |
LI X, HE Y H, CHENG S B, et al. Atomic structure evolution of Pt-Co binary catalysts: single metal sites versus intermetallic nanocrystals[J]. Advanced Materials, 2021, 33(48): e2106371.
|
| [4] |
PU Z H, LIU T T, ZHANG G X, et al. General synthesis of transition-metal-based carbon-group intermetallic catalysts for efficient electrocatalytic hydrogen evolution in wide pH range[J]. Advanced Energy Materials, 2022, 12(20): 2200293.
|
| [5] |
GAO Q, PILLAI H S, HUANG Y, et al. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights[J]. Nature Communications, 2022, 13: 2338.
|
| [6] |
ZHANG R, HONG H, LIU X H, et al. Molecular engineering of a metal-organic polymer for enhanced electrochemical nitrate-to-ammonia conversion and zinc nitrate batteries[J]. Angewandte Chemie International Edition, 2023, 62(48): e202309930.
|
| [7] |
ZHANG S, WU J H, ZHENG M T, et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia[J]. Nature Communications, 2023, 14: 3634.
|
| [8] |
WANG Y Z, ZHANG X Y, HE H J, et al. Ordered mesoporous high-entropy intermetallics for efficient oxygen reduction electrocatalysis[J]. Advanced Energy Materials, 2024, 14(8): 2303923.
|
| [9] |
ZHOU Y Y, DUAN R Z, LI H, et al. Boosting electrocatalytic nitrate reduction to ammonia via promoting water dissociation[J]. ACS Catalysis, 2023, 13(16): 10846-10854.
|
| [10] |
BUSCHOW K H J, VAN ENGEN P G, JONGEBREUR R. Magneto-optical properties of metallic ferromagnetic materials[J]. Journal of Magnetism and Magnetic Materials, 1983, 38(1): 0304885383900975.
|
| [11] |
ASHIDA Y, ARASHIBA K, NAKAJIMA K, et al. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water[J]. Nature, 2019, 568: 536-540.
|
| [12] |
QI C H, YANG H Y, SUN Z Q, et al. Modulating electronic structures of iron clusters through orbital rehybridization by adjacent single copper sites for efficient oxygen reduction[J]. Angewandte Chemie International Edition, 2023, 62(39): e202308344.
|
| [13] |
GAO W S, XIE K F, XIE J, et al. Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia[J]. Advanced Materials, 2023, 35(19): e2202952.
|
| [14] |
YANG C L, WANG L N, YIN P, et al. Sulfuranchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells[J]. Science, 2021, 374(6566): 459-464.
|
| [15] |
LUO Y, ZHANG B P, LIU C C, et al. Sulfonemodified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction[J]. Angewandte Chemie International Edition, 2023, 62(26): e202305355.
|
| [16] |
ZHU G H, JIANG Y, YANG H Y, et al. Constructing structurally ordered high-entropy alloy nanoparticles on nitrogen-rich mesoporous carbon nanosheets for high-performance oxygen reduction[J]. Advanced Materials, 2022, 34(15): e2110128.
|
| [17] |
CHEN W, LUO S P, SUN M Z, et al. Hexagonal PtBi intermetallic inlaid with submonolayer Pb oxyhydroxide boosts methanol oxidation[J]. Small, 2022, 18(14): e2107803.
|
| [18] |
HE Y T, YANG X X, LI Y S, et al. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries[J]. ACS Catalysis, 2022, 12(2): 1216-1227.
|
| [19] |
WANG W J, MENG Y, ZHANG Y X, et al. Electrically switchable polarization in Bi2O2 Se ferroelectric semiconductors[J]. Advanced Materials, 2023, 35(12): e2210854.
|
| [20] |
ZHANG H, WANG C Q, LUO H X, et al. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen[J]. Angewandte Chemie International Edition, 2023, 62(5): e202217071.
|
| [21] |
WU Z Y, KARAMAD M, YONG X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst[J]. Nature Communications, 2021, 12: 2870.
|
| [22] |
TIAN J J, XUE Q F, YAO Q, et al. Inorganic halide perovskite solar cells: progress and challenges[J]. Advanced Energy Materials, 2020, 10(23): 2000183.
|
| [23] |
ZHANG Y, ZHAO Q, DANIL B, et al. Oxygen-vacancy-induced formation of Pt-based intermetallics on MXene with strong metalsupport interactions for efficient oxygen reduction reaction[J]. Advanced Materials, 2024: 2400198.
|
| [24] |
ZHU X H, LIU M M, BU F X, et al. Ordered mesoporous nanofibers mimicking vascular bundles for lithium metal batteries[J]. National Science Review, 2024, 11(5): nwae081.
|
| [25] |
ZHAO X Y, JIANG Y Z, WANG M F, et al. Optimizing intermediate adsorption via heteroatom ensemble effect over RuFe bimetallic alloy for enhanced nitrate electroreduction to ammonia[J]. Advanced Energy Materials, 2023, 13(31): 2301409.
|
| [26] |
WANG Y T, ZHOU W, JIA R R, et al. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia[J]. Angewandte Chemie International Edition, 2020, 59(13): 5350-5354.
|
| [27] |
YANG X Y, DENG Y, YANG H T, et al. Functionalization of mesoporous semiconductor metal oxides for gas sensing: recent advances and emerging challenges[J]. Advanced Science, 2022, 10(1): e2204810.
|
| [28] |
WANG H M, HUANG J J, CAI J M, et al. In situ/operando methods for understanding electrocatalytic nitrate reduction reaction[J]. Small Methods, 2023, 7(7): e2300169.
|
| [29] |
DENG Z Q, LIANG J, LIU Q, et al. Highefficiency ammonia electrosynthesis on selfsupported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate[J]. Chemical Engineering Journal, 2022, 435: 135104.
|
| [30] |
DU F, LI J S, WANG C H, et al. Active sitesrich layered double hydroxide for nitrate-toammonia production with high selectivity and stability[J]. Chemical Engineering Journal, 2022, 434: 134641.
|
| [31] |
HU T, WANG C H, WANG M T, et al. Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts[J]. ACS Catalysis, 2021, 11(23): 14417-14427.
|
| [32] |
HAN Y, ZHANG X Y, CAI W W, et al. Facetcontrolled palladium nanocrystalline for enhanced nitrate reduction towards ammonia[J]. Journal of Colloid and Interface Science, 2021, 600: 620-628.
|
| [33] |
GUO Y, ZHANG R, ZHANG S C, et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries[J]. Energy & Environmental Science, 2021, 14(7): 3938-3944.
|
| [34] |
XU Y, REN K L, REN T L, et al. Ultralowcontent Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2 Ooctahedra for enhanced electrocatalytic nitrate reduction to ammonia[J]. Applied Catalysis B: Environmental, 2022, 306: 121094.
|
| [35] |
REZAII N, MAHOWALD K, RYSKIN R, et al. A syntax-lexicon trade-off in language production[J]. Proceedings of the National Academy of Sciences, 2022, 119(25): e2120203119.
|
| [36] |
JONOUSH Z A, REZAEE A, GHAFFARINEJAD A. Electrocatalytic nitrate reduction using Fe0/Fe3O4 nanoparticles immobilized on nickel foam: selectivity and energy consumption studies[J]. Journal of Cleaner Production, 2020, 242: 118569.
|
| [37] |
MATTAROZZI L, CATTARIN S, COMISSO N, et al. Electrodeposition of compact Ag-Ni films from concentrated chloride baths and their test in the reduction of nitrate in alkali[J]. Electrochimica Acta, 2020, 346: 136240.
|
| [38] |
XING CY, XUE Y R, ZHENG X C, et al. Highly selective electrocatalytic olefin hydrogenation in aqueous solution[J]. Angewandte Chemie International Edition, 2023, 62(41): e202310722.
|
Funding
National Natural Science Foundation of China(52225204)
National Natural Science Foundation of China(52173233)
National Natural Science Foundation of China(52202085)
Innovation Program of Shanghai Municipal Education Commission, China(2021-01-07-00-03-E00109)
Natural Science Foundation of Shanghai, China(23ZR1479200)
Shanghai Education Development Foundation and Shanghai Municipal Education Commission, China(20SG33)
Fundamental Research Funds for the Central Universities, China(2232024Y-01)
DHU Distinguished Young Professor Program, China(LZA2022001)
DHU Distinguished Young Professor Program, China(LZB2023002)