Porous Ti3C2Tx for Efficient Electrocatalytic Hydrogen Evolution Reaction

Ying LIU , Mingming HUI , Fanxing BU , Wei LUO

Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (1) : 20 -28.

PDF (2368KB)
Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (1) :20 -28. DOI: 10.19884/j.1672-5220.202404004
Advanced Functional Materials
research-article

Porous Ti3C2Tx for Efficient Electrocatalytic Hydrogen Evolution Reaction

Author information +
History +
PDF (2368KB)

Abstract

MXene is an emerging class of two-dimensional (2D) layered transition metal carbides or nitrides. Due to the highly tunable components and surface functional groups, it holds great potential in electrocatalytic hydrogen evolution reaction (HER). However, MXene nanosheet suffers from a strong tendency to restack and a lack of active edge sites. In this work, the porous Ti3C2Tx was synthesized by an oxidation and etching two-step strategy and then characterized by a series of spectroscopic techniques. The obtained porous Ti3C2Tx possesses a large number of in-plane pores. This not only creates abundant active edge sites but also enhances the mass transfer and increases the accessibility of the active sites. Compared with Ti3C2Tx, in a 0. 5 mol/L H2SO4 electrolyte, the porous Ti3C2Tx shows a 65. 6% higher electrochemical surface area (ECSA) (440 mF/cm2), a 95. 2% lower charge transfer resistance (12. 8 Ω), and a 69. 8% lower Tafel slope (144 mV/dec), and thus exhibits lower overpotential with good stability at a current density of 10 mA/cm2. At the same time, the HER performance of the porous Ti3C2Tx can be further enhanced by near-infrared laser irradiation based on the localized surface plasmon resonance effect.

Keywords

porous Ti3C2Tx / hydrogen evolution reaction(HER) / active edge site / localized surface plasmon resonance

Cite this article

Download citation ▾
Ying LIU, Mingming HUI, Fanxing BU, Wei LUO. Porous Ti3C2Tx for Efficient Electrocatalytic Hydrogen Evolution Reaction. Journal of Donghua University(English Edition), 2025, 42(1): 20-28 DOI:10.19884/j.1672-5220.202404004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WU R, XU J, ZHAO C L, et al. Dopant triggered atomic configuration activates water splitting to hydrogen[J]. Nature Communications, 2023, 14: 2306.

[2]

TURNER J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.

[3]

WEI J X, XIAO K, CHEN Y X, et al. In situ precise anchoring of Pt single atoms in spinel Mn3O4 for a highly efficient hydrogen evolution reaction[J]. Energy & Environmental Science, 2022, 15(11): 4592-4600.

[4]

YANG L, GRZESCHIK R, JIANG P, et al. Tuning the electronic properties of platinum in hybrid-nanoparticle assemblies for use in hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2023, 62 (25): e202301065.

[5]

CHEN Y W, DING R, LI J, et al. Highly active atomically dispersed platinum-based electrocatalyst for hydrogen evolution reaction achieved by defect anchoring strategy[J]. Applied Catalysis B: Environmental, 2022, 301: 120830.

[6]

MCCRORY C C L, JUNG S, FERRER I M, et al. Benchmarking hydrogen evolving reaction and oxygen volving reaction electrocatalysts for solar water splitting devices[J]. Journal of the American Chemical Society, 2015, 137 (13): 4347-4357.

[7]

WANG X M, LONG G F, LIU B, et al. Rationally modulating the functions of Ni3Sn2-NiSnOx nanocomposite electrocatalysts towards enhanced hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2023, 62(19): e202301562.

[8]

DING R, CHEN Y W, LI X K, et al. Atomically dispersed, low-coordinate Co-N sites on carbon nanotubes as inexpensive and efficient electrocatalysts for hydrogen evolution[J]. Small, 2022, 18(4): 2105335.

[9]

ZHANG L H, GUO X Y, ZHANG S L, et al. Hybrid double atom catalysts for hydrogen evolution reaction: a sweet marriage of metal and nonmetal[J]. Advanced Energy Materials, 2024, 14(2): 2302754.

[10]

RONG C, SU T, LI Z K, et al. Elastic properties and tensile strength of 2D Ti3C2Tx MXene monolayers[J]. Nature Communications, 2024, 15: 1566.

[11]

VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372 (6547): eabf1581.

[12]

BI W C, GAO G H, LI C, et al. Synthesis, properties, and applications of MXenes and their composites for electrical energy storage[J]. Progress in Materials Science, 2024, 142: 101227.

[13]

LEE C, PARK S M, KIM S, et al. Fieldinduced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets[J]. Nature Communications, 2022, 13: 5615.

[14]

ZHANG T Z, CHANG L B, ZHANG X F, et al. Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides[J]. Nature Communications, 2022, 13: 6731.

[15]

SHIMADA T, TAKENAKA N, ANDO Y, et al. Relationship between electric double-layer structure of MXene electrode and its surface functional groups[J]. Chemistry of Materials, 2022, 34(5): 2069-2075.

[16]

KAZIM S, HUANG C, HEMASIRI N H, et al. MXene-based energy devices: from progressive to prospective[J]. Advanced Functional Materials, 2024, 34(50): 2315694.

[17]

BU F X, SUN Z H, ZHOU W H, et al. Reviving Zn0 dendrites to electroactive Zn2+ by mesoporous MXene with active edge sites[J]. Journal of the American Chemical Society, 2023, 145(44): 24284-24293.

[18]

JIANG B W, YANG T, WANG T T, et al. Edge stimulated hydrogen evolution reaction on monodispersed MXene quantum dots[J]. Chemical Engineering Journal, 2022, 442: 136119.

[19]

ZHU J Y, LI F, HOU Y Z, et al. Near-roomtemperature water-mediated densification of bulk van der Waals materials from their nanosheets[J]. Nature Materials, 2024, 23: 604-611.

[20]

ZHAO R Z, ELZATAHRY A, CHAO D L, et al. Making MXenes more energetic in aqueous battery[J]. Matter, 2022, 5(1): 8-10.

[21]

WU Y C, WEI W, YU R H, et al. Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity[J]. Advanced Functional Materials, 2022, 32(17): 2110910.

[22]

ZHU Y C, RAJOU Â K, LE VOT S, et al. Modifications of MXene layers for supercapacitors[J]. Nano Energy, 2020, 73: 104734.

[23]

PENG J H, ZHANG Z Y, WANG H, et al. Amorphization of MXenes: boosting electrocatalytic hydrogen evolution[J]. Small, 2024, 20(16): 2308528.

[24]

GU Y T, WEI B, LEGUT D, et al. Single atom-modified hybrid transition metal carbides as efficient hydrogen evolution reaction catalysts[J]. Advanced Functional Materials, 2021, 31 (43): 2104285.

[25]

YUAN W Y, CHENG L F, AN Y R, et al. MXene nanofibers as highly active catalysts for hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (7): 8976-8982.

[26]

WU X H, WANG J H, WANG Z Y, et al. Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection[J]. Angewandte Chemie International Edition, 2021, 60(17): 9416-9420.

[27]

PENG M K, WANG L, LI L B, et al. Manipulating the interlayer spacing of 3D MXenes with improved stability and zinc-ion storage capability[J]. Advanced Functional Materials, 2022, 32(7): 2109524.

[28]

WANG D B, FANG Y X, YU W, et al. Significant solar energy absorption of MXene Ti3C2Tx nanofluids via localized surface plasmon resonance[J]. Solar Energy Materials and Solar Cells, 2021, 220: 110850.

[29]

LIAN Z, WU F, ZI J, et al. Infrared lightinduced anomalous defect-mediated plasmonic hot electron transfer for enhanced photocatalytic hydrogen evolution[J]. Journal of the American Chemical Society, 2023, 145(28): 15482-15487.

[30]

CHEN J, FENG J, YANG F, et al. Spaceconfined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation[J]. Angewandte Chemie International Edition, 2019, 58(27): 9275-9281.

[31]

WU S, ZHANG P, JIANG Z, et al. Enhanced peroxidase-like activity of CuS hollow nanocages by plasmon-induced hot carriers and photothermal effect for the dual-mode detection of tannic acid[J]. ACS Applied Materials & Interfaces, 2022, 14(35): 40191-40199.

[32]

JIAO S L, DAI K, BESTEIRO L V, et al. Differentiating plasmon-enhanced chemical reactions on AgPd hollow nanoplates through surface-enhanced Raman spectroscopy[J]. ACS Catalysis, 2024, 14(9): 6799-6806.

[33]

MA T T, WANG P, NIU H J, et al. Single Ru atoms dispersed on MoSe2/MXene nanosheets with multiple interfaces for enhanced acidic hydrogen evolution[J]. Carbon, 2024, 218: 118758.

Funding

National Outstanding Youth Science Foundation(52225204)

PDF (2368KB)

65

Accesses

0

Citation

Detail

Sections
Recommended

/