Design of Dual-Wavelength Bifocal Metalens Based on Generative Adversarial Network Model

Gangcheng LIU , Junkai WANG , Sen LIN , Binhe WU , Chunrui WANG , Jian ZHOU , Hao SUN

Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (2) : 168 -176.

PDF (7407KB)
Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (2) :168 -176. DOI: 10.19884/j.1672-5220.202404001
Information Technology and Artificial Intelligence
research-article

Design of Dual-Wavelength Bifocal Metalens Based on Generative Adversarial Network Model

Author information +
History +
PDF (7407KB)

Abstract

Multifocal metalenses are of great concern in optical communications, optical imaging and micro-optics systems, but their design is extremely challenging.In recent years, deep learning methods have provided novel solutions to the design of optical planar devices.Here, an approach is proposed to explore the use of generative adversarial networks(GANs) to realize the design of metalenses with different focusing positions at dual wavelengths.This approach includes a forward network and an inverse network, where the former predicts the optical response of meta-atoms and the latter generates structures that meet specific requirements.Compared to the traditional search method, the inverse network demonstrates higher precision and efficiency in designing a dual-wavelength bifocal metalens.The results will provide insights and methodologies for the design of tunable wavelength metalenses, while also highlighting the potential of deep learning in optical device design.

Keywords

generative adversarial network(GAN) / metalens / forward network / inverse design

Cite this article

Download citation ▾
Gangcheng LIU, Junkai WANG, Sen LIN, Binhe WU, Chunrui WANG, Jian ZHOU, Hao SUN. Design of Dual-Wavelength Bifocal Metalens Based on Generative Adversarial Network Model. Journal of Donghua University(English Edition), 2025, 42(2): 168-176 DOI:10.19884/j.1672-5220.202404001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.

[2]

KIM J, YANG Y, BADLOE T, et al. Geometric and physical configurations of meta-atoms for advanced metasurface holography[J]. InfoMat, 2021, 3(7):739-754.

[3]

YU Y F, ZHU A Y, PANIAGUA-DOMíNGUEZ R, et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths[J]. Laser & Photonics Reviews, 2015, 9(4):412-418.

[4]

OVERVIG A C, SHRESTHA S, MALEK S C, et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J]. Light:Science & Applications, 2019,8:92.

[5]

WANG H L, MA H F, CHEN M, et al. A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves[J]. Advanced Functional Materials, 2021, 31(25):2100275.

[6]

YUE F Y, WEN D D, XIN J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9):1558-1563.

[7]

ZHANG L, LI J S. Vortex beam generator working in terahertz region based on transmissive metasurfaces[J]. Optik, 2021,243:167452.

[8]

AHMED H, KIM H, ZHANG Y B, et al. Optical metasurfaces for generating and manipulating optical vortex beams[J]. Nanophotonics, 2022, 11(5):941-956.

[9]

HUANG L L, ZHANG S, ZENTGRAF T. Metasurface holography:from fundamentals to applications[J]. Nanophotonics, 2018, 7(6):1169-1190.

[10]

NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013,4:2807.

[11]

PARK C S, SHRESTHA V R, YUE W J, et al. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks[J]. Scientific Reports, 2017,7:2556.

[12]

HAN X, FAN Z Y, LIU Z Y, et al. Inverse design of metasurface optical filters using deep neural network with high degrees of freedom[J]. InfoMat, 2021, 3(4):432-442.

[13]

KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths:diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194.

[14]

CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018,13:220-226.

[15]

ARBABI A, FARAON A. Advances in optical metalenses[J]. Nature Photonics, 2023,17:16-25.

[16]

YANG M Y, SHEN X, LI Z P, et al. High focusing efficiency metalens with large numerical aperture at terahertz frequency[J]. Optics Letters, 2023, 48(17):4677.

[17]

POUYANFAR N, NOURINIA J, GHOBADI C. Multiband and multifunctional polarization converter using an asymmetric metasurface[J]. Scientific Reports, 2021,11:9306.

[18]

WANG P, ZHANG Y, WANG Y, et al. Multifunctional polarization converter based on multilayer reconfigurable metasurface[J]. Defence Technology, 2023,28:136-145.

[19]

XU P, XIAO Y F, HUANG H X, et al. Dual-wavelength hologram of high transmittance metasurface[J]. Optics Express, 2023, 31(5):8110.

[20]

ARBABI E, LI J Q, HUTCHINS R J, et al. Two-photon microscopy with a double-wavelength metasurface objective lens[J]. Nano Letters, 2018, 18(8):4943-4948.

[21]

QU J Q, LUO H J, YU C Y. Dual-wavelength polarization-dependent bifocal metalens for achromatic optical imaging based on holographic principle[J]. Sensors, 2022, 22(5):1889.

[22]

AN S S, FOWLER C, ZHENG B W, et al. A deep learning approach for objective-driven all-dielectric metasurface design[J]. ACS Photonics, 2019, 6(12):3196-3207.

[23]

NOH J, NAM Y H, SO S, et al. Design of a transmissive metasurface antenna using deep neural networks[J]. Optical Materials Express, 2021, 11(7):2310.

[24]

FOWLER C, AN S, ZHENG B, et al. Deep learning for metasurfaces and metasurfaces for deep learning[M]//Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning. New York,USA: IEEE, 2023:319-343.

[25]

AN S S, ZHENG B W, SHALAGINOV M Y, et al. Deep learning modeling approach for metasurfaces with high degrees of freedom[J]. Optics Express, 2020, 28(21):31932.

[26]

NADELL C C, HUANG B H, MALOF J M, et al. Deep learning for accelerated all-dielectric metasurface design[J]. Optics Express, 2019, 27(20):27523.

[27]

WANG J K, LIN S, LIU G C, et al. Reverse design of metasurface based on generative adversarial network model[J]. Journal of Donghua University (Natural Science), 2024, 50(5):61-68. (in Chinese)

[28]

YEUNG C, TSAI R, PHAM B, et al. Global inverse design across multiple photonic structure classes using generative deep learning[J]. Advanced Optical Materials, 2021, 9(20):2100548.

[29]

KIANI M, KIANI J, ZOLFAGHARI M. Conditional generative adversarial networks for inverse design of multifunctional metasurfaces[J]. Advanced Photonics Research, 2022, 3(11):2200110.

[30]

QIU Y H, CHEN S X, HOU Z Y, et al. Chiral metasurface for near-field imaging and far-field holography based on deep learning[J]. Micromachines, 2023, 14(4):789.

[31]

WANG H P, CAO D M, et al. Inverse design of metasurfaces with customized transmission characteristics of frequency band based on generative adversarial networks[J]. Optics Express, 2023, 31(23):37763.

[32]

AN S S, ZHENG B W, TANG H, et al. Multifunctional metasurface design with a generative adversarial network[J]. Advanced Optical Materials, 2021, 9(5):2001433.

[33]

MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL].(2014-11-06)[2024-02-05]. https://arxiv.org/pdf/1411.1784.

[34]

GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[EB/OL].(2017-12-25)[2024-02-05]. https://arxiv.org/pdf/1704.00028.

[35]

MA T G, TOBAH M, WANG H Z, et al. Benchmarking deep learning-based models on nanophotonic inverse design problems[J]. Opto-Electronic Science, 2022, 1(1):210012.

Funding

National Natural Science Foundation of China(61975029)

PDF (7407KB)

82

Accesses

0

Citation

Detail

Sections
Recommended

/