Enhanced Reliability and Stability of Vanadium Oxide-Based RRAM by Constructing VOx / TiO2 / n++ Si p-i-n Structure

Ze WANG , Xin ZHOU , Khaleeq ASAD , Chunrui WANG

Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (3) : 242 -250.

PDF (8861KB)
Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (3) :242 -250. DOI: 10.19884/j.1672-5220.202403017
Advanced Functional Materials
research-article

Enhanced Reliability and Stability of Vanadium Oxide-Based RRAM by Constructing VOx / TiO2 / n++ Si p-i-n Structure

Author information +
History +
PDF (8861KB)

Abstract

Vanadium oxide(VOx) has garnered significant attention in the realm of resistive random-access memory(RRAM) owing to its outstanding resistive switching characteristics.However,the ambiguous mechanisms of resistive switching and inferior stability hinder its practical applications.Herein,an RRAM named Cu/VOx/TiO2/n++Si device is prepared.It displays bipolar resistive switching behavior and shows superior cycle endurance(>200),a significantly high on/off ratio(> 102) and long-term stability.The tremendous improvement in the stability of the Cu/VOx/TiO2/n++Si device compared with the Cu/VOx/n++Si device is due to the p-i-n structure of VOx/TiO2/n++Si.The switching mechanism of the Cu/VOx/TiO2/n++Si device is attributed to the growth and annihilation of Cu conductive filaments.

Keywords

vanadium oxide / bipolar resistive switching / p-i-n junction / resistive random-access memory(RRAM) / titanium dioxide / double-layer structure

Cite this article

Download citation ▾
Ze WANG, Xin ZHOU, Khaleeq ASAD, Chunrui WANG. Enhanced Reliability and Stability of Vanadium Oxide-Based RRAM by Constructing VOx / TiO2 / n++ Si p-i-n Structure. Journal of Donghua University(English Edition), 2025, 42(3): 242-250 DOI:10.19884/j.1672-5220.202403017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PRAKASH A, PARK J, SONG J, et al. Demonstration of low power 3-bit multilevel cell characteristics in a TaOx-based RRAM by stack engineering[J]. IEEE Electron Device Letters, 2015, 36(1):32-34.

[2]

PUGLISI F M, QAFA A, PAVAN P. Temperature impact on the reset operation in HfO2 RRAM[J]. IEEE Electron Device Letters, 2015, 36(3):244-246.

[3]

WANG G M, LONG S B, YU Z A, et al. Improving resistance uniformity and endurance of resistive switching memory by accurately controlling the stress time of pulse program operation[J]. Applied Physics Letters, 2015, 106(9):092103.

[4]

YANG M K, KIM G H, JU H, et al. The interfacial layer effect on bi-stable resistive switching phenomenon in MnOx thin film[J]. Applied Physics Letters, 2015, 107(5):053503.

[5]

MAESTRO M, MARTIN-MARTINEZ J, DIAZ J, et al. Analysis of set and reset mechanisms in Ni/HfO2-based RRAM with fast ramped voltages[J]. Microelectronic Engineering, 2015,147:176-179.

[6]

LANZA M. A review on resistive switching in high-k dielectrics:a nanoscale point of view using conductive atomic force microscope[J]. Materials, 2014, 7(3):2155-2182.

[7]

FU Y Y, ZHOU Y, HUANG X D, et al. Reconfigurable synaptic and neuronal functions in a V/VOx/HfWOx/Pt memristor for nonpolar spiking convolutional neural network[J]. Advanced Functional Materials, 2022, 32(23):2270130.

[8]

IQBAL S, DUY L T, KANG H, et al. Femtojoule-power-consuming synaptic memtransistor based on mott transition of multiphasic vanadium oxides[J]. Advanced Functional Materials, 2021, 31(46):2102567.

[9]

IVANOV A I, GUTAKOVSKII A K, KOTIN I A, et al. Resistive switching effect with ON/OFF current relation up to 109 in 2D printed composite films of fluorinated graphene with V2O5 nanoparticles[J]. Advanced Electronic Materials, 2019, 5(10):1900310.

[10]

CHEN K H, LIAO C H, TSAI J H, et al. Electrical conduction and bipolar switching properties in transparent vanadium oxide resistive random access memory (RRAM) devices[J]. Applied Physics A, 2013, 110(1):211-216.

[11]

PAWAR M S, BANKAR P K, MORE M A, et al. Ultra-thin V2O5 nanosheet based humidity sensor,photodetector and its enhanced field emission properties[J]. RSC Advances, 2015, 5(108):88796-88804.

[12]

LI J P, ZHOU X, XU L, et al. Bipolar resistive switching in Ag/VO2(B)/SiOx/n++Si RRAM[J]. Materials Research Express, 2022, 9(3):035003.

[13]

WONG F J, SRIRAM T S, SMITH B R, et al. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices[J]. Solid-State Electronics, 2013,87:21-26.

[14]

LEE J, BOURIM E M, LEE W, et al. Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications[J]. Applied Physics Letters, 2010, 97(17):172105.

[15]

YE C, DENG T F, ZHANG J C, et al. Enhanced resistive switching performance for bilayer HfO2/TiO2 resistive random access memory[J]. Semiconductor Science and Technology, 2016, 31(10):105005.

[16]

HU Q L, KANG T S, ABBAS H, et al. Resistive switching characteristics of Ag/MnO/CeO2/Pt heterostructures memory devices[J]. Microelectronic Engineering, 2018,189:28-32.

[17]

HU Q L, ABBAS H, KANG T S, et al. Forming-free resistive switching characteristics in manganese oxide and hafnium oxide devices[J]. Japanese Journal of Applied Physics, 2019, 58(4):044001.

[18]

QI M, FU T Q, YANG H D, et al. Reliable analog resistive switching behaviors achieved using memristive devices in AlOx/HfOx bilayer structure for neuromorphic systems[J]. Semiconductor Science and Technology, 2022, 37(3):035018.

[19]

JAIN P K, SALIM M, CHAND U, et al. Switching characteristics in TiO2/ZnO double layer resistive switching memory device[J]. Materials Research Express, 2017, 4(6):065901.

[20]

LIN C L, CHANG W Y, HUANG Y L, et al. Resistance switching behavior of ZnO resistive random access memory with a reduced graphene oxide capping layer[J]. Japanese Journal of Applied Physics, 2015, 54(4S):04DJ08.

[21]

JIAN W Y, YOU H C, WU C Y. Resistive switching mechanism of ZnO/ZrO2-stacked resistive random access memory device annealed at 300 ℃ by sol-gel method with forming-free operation[J]. Japanese Journal of Applied Physics, 2018, 57(1):011501.

[22]

LEE H Y, CHEN P S, WU T Y, et al.Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO 2 based RRAM[C]// 2008 IEEE International Electron Devices Meeting,San Francisco,CA,USA. New York: IEEE,2008:1-4.

[23]

ZHOU G D, XIAO L H, ZHANG S J, et al. Mechanism for an enhanced resistive switching effect of bilayer NiOx/TiO2 for resistive random access memory[J]. Journal of Alloys and Compounds, 2017,722:753-759.

[24]

CHOI J, KIM S. Improved stability and controllability in ZrN-based resistive memory device by inserting TiO2 layer[J]. Micromachines, 2020, 11(10):905.

[25]

HSIUNG C P, LIAO H W, GAN J Y, et al. Formation and instability of silver nanofilament in Ag-based programmable metallization cells[J]. ACS Nano, 2010, 4(9):5414-5420.

[26]

DAI Y W, BAO W Z, HU L F, et al. Forming free and ultralow-power erase operation in atomically crystal TiO2 resistive switching[J]. 2D Materials, 2017, 4(2):025012.

[27]

REHMAN M M, REHMAN H M M U, GUL J Z, et al. Decade of 2D-materials-based RRAM devices:a review[J]. Science and Technology of Advanced Materials, 2020, 21(1):147-186.

[28]

HANSEN M, ZIEGLER M, KOLBERG L, et al. A double barrier memristive device[J]. Scientific Reports, 2015,5:13753.

[29]

HAZRA P, JINESH K B. Vertical limits of resistive memory scaling:the detrimental influence of interface states[J]. Applied Physics Letters, 2020, 116(17):173502.

[30]

WANG C, WANG C R, SUN L, et al. Synthesis and characteristics of p-type CdS nanobelts[J]. Materials Research Express, 2017, 4(11):115013.

[31]

SPROUL A. Understanding the p-n junction[M]//LARGENT R,WENHAM S.Solar cells resources for the secondary science teacher. Sydney: UNSW, 2003:13-24.

[32]

NOSAKA Y, NOSAKA A Y. Reconsideration of intrinsic band alignments within anatase and rutile TiO2[J]. The Journal of Physical Chemistry Letters, 2016, 7(3):431-434.

[33]

BONDARENKA V, GREBINSKIJ S, MICKEVI Č, et al. Determination of vanadium valence in hydrated compounds[J]. Journal of Alloys and Compounds, 2004, 382(1/2):239-243.

[34]

HOTA M K, NAGARAJU D H, HEDHILI M N, et al. Electroforming free resistive switching memory in two-dimensional VOx nanosheets[J]. Applied Physics Letters, 2015, 107(16):163106.

[35]

ZHOU X, ZHAO L, ZHEN W L, et al. Phase-transition-induced VO2 thin film IR photodetector and threshold switching selector for optical neural network applications[J]. Advanced Electronic Materials, 2021, 7(5):2001254.

[36]

ZHANG K L, WANG B L, WANG F, et al. VO2-based selection device for passive resistive random access memory application[J]. IEEE Electron Device Letters, 2016, 37(8):978-981.

[37]

IVANOV A I, PRINZ V Y, ANTONOVA I V, et al. Resistive switching on individual V2O5 nanoparticles encapsulated in fluorinated graphene films[J]. Physical Chemistry Chemical Physics, 2021, 23(36):20434-20443.

[38]

ZHAN Y J, LU Y, XIAO X D, et al. Tuning thermochromic performance of VOx-based multilayer films by controlling annealing pressure[J]. Ceramics International, 2020, 46(2):2079-2085.

[39]

SUN K, ZHANG K L, WANG F, et al. An increasing high resistance state phenomenon in Al/VOx/Cu resistive switching device[J]. ECS Transactions, 2014, 60(1):1057-1062.

[40]

ZHANG H Z, ZHANG K L, WANG F, et al.Effect of VOx interlayer in Cu/HfOx/TiN cell and its resistive switching mechanism[C]//2015 China Semiconductor Technology International Conference,Shanghai,China. New York: IEEE, 2015:1-3.

[41]

PANDA A B, MAHAPATRA S K, BARHAI P K, et al. Understanding of gas phase deposition of reactive magnetron sputtered TiO2 thin films and its correlation with bactericidal efficiency[J]. Applied Surface Science, 2012, 258(24):9824-9831.

[42]

JEONG H Y, LEE J Y, CHOI S Y. Interface-engineered amorphous TiO2-based resistive memory devices[J]. Advanced Functional Materials, 2010, 20(22):3912-3917.

[43]

ZHANG R L, HUANG H, XIA Q, et al. Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory[J]. Advanced Electronic Materials, 2019, 5(5):1800833.

[44]

SAMPATH S, MAYDANNIK P, IVANOVA T, et al. Efficient solar photocatalytic activity of TiO2 coated nano-porous silicon by atomic layer deposition[J]. Superlattices and Microstructures, 2016,97:155-166.

[45]

SAWA A. Resistive switching in transition metal oxides[J]. Materials Today, 2008, 11(6):28-36.

[46]

KWON D H, KIM K M, JANG J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory[J]. Nature Nanotechnology, 2010, 5(2):148-153.

[47]

SUN Y M, SONG C, YIN J, et al. Guiding the growth of a conductive filament by nanoindentation to improve resistive switching[J]. ACS Applied Materials & Interfaces, 2017, 9(39):34064-34070.

[48]

SUN Y M, SONG C, YIN J, et al. Modulating metallic conductive filaments via bilayer oxides in resistive switching memory[J]. Applied Physics Letters, 2019, 114(19):193502.

[49]

SIMMONS J G. Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems[J]. Physical Review, 1967, 155(3):657-660.

Funding

National Natural Science Foundation of China(61376017)

PDF (8861KB)

137

Accesses

0

Citation

Detail

Sections
Recommended

/