Mechanochromism of a Perylene Diimide Derivative-Doped Styrene-Butadiene-Styrene Block Copolymer

Arslan MUHAMMAD , Jia CHEN , Zuogui LIAO , Haoru ZHAO , Dandan GU , Yangshuang XIANG , Xiaoze JIANG , Bin SUN

Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (3) : 251 -258.

PDF (5007KB)
Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (3) :251 -258. DOI: 10.19884/j.1672-5220.202403008
Advanced Functional Materials
research-article

Mechanochromism of a Perylene Diimide Derivative-Doped Styrene-Butadiene-Styrene Block Copolymer

Author information +
History +
PDF (5007KB)

Abstract

Mechanochromic materials respond to external stimuli and provide early warnings of material damage. Perylene diimide(PDI)-based materials have attracted attention because of their outstanding fluorescence performance. However, the application of PDI in mechanochromism is limited by the difficulty for mechanical forces to disrupt the aggregation of PDI and its derivatives, as well as the fluorescence quenching caused by continuous π-π stacking between PDI molecules. To eliminate the fluorescence quenching effect caused by the aggregation of PDI and broaden its application fields, polyhedral oligomeric silsesquioxane(POSS)-PDI-POSS(PPP) was screened as PDI doping. The photophysical properties of PPP in both monomeric and aggregated states in different solvents were studied. Then, PPP and styrene-butadiene-styrene block copolymer(SBS) were mixed to prepare the PPP/SBS film. The mechanochromic properties of PPP/SBS film were explored. The fluorescence emission spectra confirmed that when the PPP mass fraction increased to 0.30%, the PPP/SBS film exhibited mechanochromic behavior under uniaxial deformation due to the changes in the molecular packing.

Keywords

mechanochromism / perylene diimide(PDI) / styrene-butadiene-styrene block copolymer(SBS) / fluorescence

Cite this article

Download citation ▾
Arslan MUHAMMAD, Jia CHEN, Zuogui LIAO, Haoru ZHAO, Dandan GU, Yangshuang XIANG, Xiaoze JIANG, Bin SUN. Mechanochromism of a Perylene Diimide Derivative-Doped Styrene-Butadiene-Styrene Block Copolymer. Journal of Donghua University(English Edition), 2025, 42(3): 251-258 DOI:10.19884/j.1672-5220.202403008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BEYER M K, CLAUSEN-SCHAUMANN H. Mechanochemistry:the mechanical activation of covalent bonds[J]. Chemical Reviews, 2005, 105(8):2921-2948.

[2]

CARUSO M M, DAVIS D A, SHEN Q L, et al. Mechanically-induced chemical changes in polymeric materials[J]. Chemical Reviews, 2009, 109(11):5755-5798.

[3]

CALLISTER W D Jr, RETHWISCH D G, Fundamentals of materials science and engineering:an integrated approach[M]. 5th ed.Hoboken, NJ: John Wiley & Sons, 2016.

[4]

DENEKE N, RENCHECK M L, DAVIS C S. An engineer’s introduction to mechanophores[J]. Soft Matter, 2020, 16(27):6230-6252.

[5]

CHEN Y J, MELLOT G, VAN LUIJK D, et al. Mechanochemical tools for polymer materials[J]. Chemical Society Reviews, 2021, 50(6):4100-4140.

[6]

PATRICK J F, ROBB M J, SOTTOS N R, et al. Polymers with autonomous life-cycle control[J]. Nature, 2016, 540(7633):363-370.

[7]

BRANTLEY J N, WIGGINS K M, BIELAWSKI C W. Polymer mechanochemistry:the design and study of mechanophores[J]. Polymer International, 2013, 62(1):2-12.

[8]

O’NEILL R T, BOULATOV R. The many flavours of mechanochemistry and its plausible conceptual underpinnings[J]. Nature Reviews Chemistry, 2021, 5(3):148-167.

[9]

HE S Y, STRATIGAKI M, CENTENO S P, et al. Tailoring the properties of optical force probes for polymer mechanochemistry[J]. Chemistry, 2021, 27(64):15889-15897.

[10]

LI J, NAGAMANI C, MOORE J S. Polymer mechanochemistry:from destructive to productive[J]. Accounts of Chemical Research, 2015, 48(8):2181-2190.

[11]

TRAEGER H, KIEBALA D J, WEDER C, et al. From molecules to polymers:harnessing inter- and intramolecular interactions to create mechanochromic materials[J]. Macromolecular Rapid Communications, 2021, 42(1):e2000573.

[12]

YUAN W, YUAN Y, YANG F, et al. Improving mechanoluminescent sensitivity of 1, 2-dioxetane-containing thermoplastic polyurethanes by controlling energy transfer across polymer chains[J]. Macromolecules, 2018, 51(21):9019-9025.

[13]

YAN C M, YANG F, WU M J, et al. Phase-locked dynamic and mechanoresponsive bonds design toward robust and mechanoluminescent self-healing polyurethanes:a microscopic view of self-healing behaviors[J]. Macromolecules, 2019, 52(23):9376-9382.

[14]

LIU S, YUAN Y, LI J Y, et al. An optomechanical study of mechanoluminescent elastomeric polyurethanes with different hard segments[J]. Polymer Chemistry, 2020, 11(11):1877-1884.

[15]

CHEN Y L, SIJBESMA R P. Dioxetanes as mechanoluminescent probes in thermoplastic elastomers[J]. Macromolecules, 2014, 47(12):3797-3805.

[16]

IMATO K, KANEHARA T, NOJIMA S, et al. Repeatable mechanochemical activation of dynamic covalent bonds in thermoplastic elastomers[J]. Chemical Communications, 2016, 52(69):10482-10485.

[17]

IMATO K, IRIE A, KOSUGE T, et al. Mechanophores with a reversible radical system and freezing induced mechanochemistry in polymer solutions and gels[J]. Angewandte Chemie International Edition, 2015, 127(21):6266-6270.

[18]

IMATO K, KANEHARA T, OHISHI T, et al. Mechanochromic dynamic covalent elastomers:quantitative stress evaluation and autonomous recovery[J]. ACS Macro Letters, 2015, 4(11):1307-1311.

[19]

LEE C K, BEIERMANN B A, SILBERSTEIN M N, et al. Exploiting force sensitive spiropyrans as molecular level probes[J]. Macromolecules, 2013, 46(10):3746-3752.

[20]

RAISCH M, GENOVESE D, ZACCHERONI N, et al. Highly sensitive, anisotropic, and reversible stress/strain-sensors from mechanochromic nanofiber composites[J]. Advanced Materials, 2018, 30(39):e1802813.

[21]

KIM T A, BEIERMANN B A, WHITE S R, et al. Effect of mechanical stress on spiropyran-merocyanine reaction kinetics in a thermoplastic polymer[J]. ACS Macro Letters, 2016, 5(12):1312-1316.

[22]

LEE C K, DAVIS D A, WHITE S R, et al. Force-induced redistribution of a chemical equilibrium[J]. Journal of the American Chemical Society, 2010, 132(45):16107-16111.

[23]

PUCCI A, RUGGERI G. Mechanochromic polymer blends[J]. Journal of Materials Chemistry, 2011, 21(23):8282-8291.

[24]

PUCCI A, BIZZARRI R, RUGGERI G. Polymer composites with smart optical properties[J]. Soft Matter, 2011, 7(8):3689-3700.

[25]

DONATI F, PUCCI A, CAPPELLI C, et al. Modulation of the optical response of polyethylene films containing luminescent perylene chromophores[J]. The Journal of Physical Chemistry B, 2008, 112(12):3668-3679.

[26]

WANG T S, ZHANG N, DAI J W, et al. Novel reversible mechanochromic elastomer with high sensitivity:bond scission and bending-induced multicolor switching[J]. ACS Applied Materials & Interfaces, 2017, 9(13):11874-11881.

[27]

TRAEGER H, SAGARA Y, KIEBALA D J, et al. Folded perylene diimide loops as mechanoresponsive motifs[J]. Angewandte Chemie International Edition, 2021, 133(29):16327-16335.

[28]

SAGARA Y, TRAEGER H, LI J, et al. Mechanically responsive luminescent polymers based on supramolecular cyclophane mechanophores[J]. Journal of the American Chemical Society, 2021, 143(14):5519-5525.

[29]

WüRTHNER F, SAHA-MÖLLER C R, FIMMEL B, et al. Perylene bisimide dye assemblies as archetype functional supramolecular materials[J]. Chemical Reviews, 2016, 116(3):962-1052.

[30]

HUANG C, BARLOW S, MARDER S R. Perylene-3, 4, 9, 10-tetracarboxylic acid diimides:synthesis, physical properties, and use in organic electronics[J]. The Journal of Organic Chemistry, 2011, 76(8):2386-2407.

[31]

CHEN S, SLATTUM P, WANG C Y, et al. Self-assembly of perylene imide molecules into 1D nanostructures:methods, morphologies, and applications[J]. Chemical Reviews, 2015, 115(21):11967-11998.

[32]

SHAO Y, YIN G Z, REN X K, et al. Engineering π-π interactions for enhanced photoluminescent properties:unique discrete dimeric packing of perylene diimides[J]. RSC Advances, 2017, 7(11):6530-6537.

[33]

BALAKRISHNAN K, DATAR A, NADDO T, et al. Effect of side-chain substituents on self-assembly of perylene diimide molecules:morphology control[J]. Journal of the American Chemical Society, 2006, 128(22):7390-7398.

Funding

Yunfu 2023 Innovation Team Project, China(CYRC202305)

PDF (5007KB)

132

Accesses

0

Citation

Detail

Sections
Recommended

/