Cellulose-Based Nanofibers Electrospun from Cuprammonium Solutions: Preparation, Mechanical and Antibacterial Properties

Iqbal DANISH , Renhai ZHAO , Ilyas Sarwar MUHAMMAD , Xin NING

Journal of Donghua University(English Edition) ›› 2024, Vol. 41 ›› Issue (6) : 582 -594.

PDF (15802KB)
Journal of Donghua University(English Edition) ›› 2024, Vol. 41 ›› Issue (6) :582 -594. DOI: 10.19884/j.1672-5220.202402004
Advanced Functional Materials
research-article

Cellulose-Based Nanofibers Electrospun from Cuprammonium Solutions: Preparation, Mechanical and Antibacterial Properties

Author information +
History +
PDF (15802KB)

Abstract

Nanofibers based on cellulose are highly desired due to their remarkable biocompatibility and attractive physical and biochemical characteristics. The current research describes a simple electrospinning process and the nano-materials therefrom, utilizing the classical cellulose-cuprammonium solution without the more exotic chemical solvent combinations. Furthermore, without the use of organic solvents, a binary polymer system with the addition of polyethylene oxide(PEO) is introduced to improve the robustness of the electrospinning and the properties of the final material. The impacts of the cellulose source, cellulose mass fraction and PEO formulation on spinnability, fiber morphology and mechanical properties are investigated. Nanofibers with diameters ranging from 130 nm to 382 nm are successfully fabricated. The presence of copper in the fabricated material is confirmed by using the X-ray photoelectron spectroscopy(XPS) analysis. The cuprammonium process significantly changes the original crystalline structure of cellulose Ⅰ into cellulose Ⅲ within the nanofiber morphology. The nanofibrous membranes also demonstrate notable antibacterial characteristics for Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli).

Keywords

cellulose / electrospinning / cuprammonium solution / polyethylene oxide(PEO) / antibacterial activity

Cite this article

Download citation ▾
Iqbal DANISH, Renhai ZHAO, Ilyas Sarwar MUHAMMAD, Xin NING. Cellulose-Based Nanofibers Electrospun from Cuprammonium Solutions: Preparation, Mechanical and Antibacterial Properties. Journal of Donghua University(English Edition), 2024, 41(6): 582-594 DOI:10.19884/j.1672-5220.202402004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HABIBI Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews, 2014, 43(5):1519-1542.

[2]

DAHIYA A. Cellulosic fibers and nonwovens from solutions:processing and properties[D]. Knoxville: The University of Tennessee, 2006.

[3]

RAZALI R A, LOKANATHAN Y, CHOWDHURY S R, et al. Physicochemical and structural characterization of surface modified electrospun PMMA nanofibre[J]. Sains Malaysiana, 2018, 47(8):1787-1794.

[4]

KUMI A K, FAN R L, ZHANG Y, et al. Preparation and properties of regenerated cellulose/amylopectin blend fibers from 1-butyl-3-methylimidazolium chloride with controlled biodegradation[J]. Journal of Donghua University (English Edition). 2024, 41(5):461-473.

[5]

ROJAS O J. Cellulose chemistry and properties:fibers, nanocelluloses and advanced materials[M]. Cham: Springer, 2016.

[6]

SZABÓ L, MILOTSKYI R, SHARMA G, et al. Cellulose processing in ionic liquids from a materials science perspective:turning a versatile biopolymer into the cornerstone of our sustainable future[J]. Green Chemistry, 2023, 25(14):5338-5389.

[7]

HACHAICHI A, KOUINI B, KIAN L K, et al. Nanocrystalline cellulose from microcrystalline cellulose of date palm fibers as a promising candidate for bio-nanocomposites:isolation and characterization[J]. Materials, 2021, 14(18):5313.

[8]

ELSEOUD O A, KOSTAG M, JEDVERT K, et al. Cellulose in ionic liquids and alkaline solutions:advances in the mechanisms of biopolymer dissolution and regeneration[J]. Polymers, 2019, 11(12):1917.

[9]

COSTA C, MEDRONHO B, FILIPE A, et al. Emulsion formation and stabilization by biomolecules:the leading role of cellulose[J]. Polymers, 2019, 11(10):1570.

[10]

ZHU B J, LI Z, CHEN S Y, et al. Bacterial cellulose nanofibers as reinforcement for preparation of bamboo pulp-based composite paper[J]. Journal of Donghua University (English Edition), 2023, 40(3):247-254.

[11]

SAYYED A J, DESHMUKH N A, PINJARI D V. A critical review of manufacturing processes used in regenerated cellulosic fibers:viscose,cellulose acetate,cuprammonium,LiCl/DMAc,ionic liquids,and NMMO based Lyocell[J]. Cellulose, 2019, 26(5):2913-2940.

[12]

DIAS Y J, KOLBASOV A, SINHA-RAY S, et al. Theoretical and experimental study of dissolution mechanism of cellulose[J]. Journal of Molecular Liquids, 2020,312:113450.

[13]

SAALWÄCHTER K, BURCHARD W, KLÜFERS P, et al. Cellulose solutions in water containing metal complexes[J]. Macromolecules, 2000, 33(11):4094-4107.

[14]

REEVES R E. Cuprammonium-glycoside complexes[J]. Advances in Carbohydrate Chemistry, 1951,6:107-134.

[15]

SAALWÄCHTER K, BURCHARD W. Cellulose in new metal-complexing solvents.2.semidilute behavior in Cd-tren[J]. Macromolecules, 2001, 34(16):5587-5598.

[16]

MIYAMOTO I, MATSUOKA Y, MATSUI T, et al. Studies on structure of cuprammonium cellulose Ⅲ.structure of regenerated cellulose treated by cuprammonium solution[J]. Polymer Journal, 1996, 28(3):276-281.

[17]

ZHANG Z Y, WEI J Y, ZHANG X L, et al. Polyester fabrics coated with cupric hydroxide and cellulose for the treatment of kitchen oily wastewater[J]. Chemosphere, 2022,302:134840.

[18]

ADAMU B F, GAO J, JHATIAL A K, et al. A review of medicinal plant-based bioactive electrospun nano fibrous wound dressings[J]. Materials & Design, 2021,209:109942.

[19]

TEIXEIRA M A, PAIVA M C, et al. Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing[J]. Nanomaterials, 2020, 10(3):557.

[20]

GE L, YIN J J, YAN D W, et al. Construction of nanocrystalline cellulose-based composite fiber films with excellent porosity performances via an electrospinning strategy[J]. ACS Omega, 2021, 6(7):4958-4967.

[21]

LI C H, MU J H, SONG Y J, et al. Highly aligned cellulose/polypyrrole composite nanofibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor[J]. ACS Applied Materials & Interfaces, 2023:15(7):9820-9829.

[22]

DIZGE N, SHAULSKY E, KARANIKOLA V. Electrospun cellulose nanofibers for superhydrophobic and oleophobic membranes[J]. Journal of Membrane Science, 2019,590:117271.

[23]

ZAITOON A, LIM L T. Effect of poly(ethylene oxide) on the electrospinning behavior and characteristics of ethyl cellulose composite fibers[J]. Materialia, 2020,10:100649.

[24]

FAWAL E, FAROUK G. Polymer nanofibers electrospinning:a review[J]. Egyptian Journal of Chemistry, 2020, 63(4):1279-1303.

[25]

QI H S, SUI X F, YUAN J Y, et al. Electrospinning of cellulose-based fibers from NaOH/urea aqueous system[J]. Macromolecular Materials and Engineering, 2010, 295(8):695-700.

[26]

LIU S P, LI J W, ZHANG S H, et al. Template-assisted magnetron sputtering of cotton nonwovens for wound healing application[J]. ACS Applied Bio Materials, 2020, 3(2):848-858.

[27]

GAO J, GUO H W, ZHAO L S, et al. Water-stability and biological behavior of electrospun collagen/PEO fibers by environmental friendly crosslinking[J]. Fibers and Polymers, 2017, 18(8):1496-1503.

[28]

NIKBAKHT M, SALEHI M, REZAYAT S M, et al. Various parameters in the preparation of chitosan/polyethylene oxide electrospun nanofibers containing Aloe vera extract for medical applications[J]. Nanomedicine Journal, 2020, 7(1):21-28.

[29]

CHEN G K, GUO J X, NIE J, et al.Preparation,characterization,and application of PEO/HA core shell nanofibers based on electric field induced phase separation during electrospinning[J]. Polymer, 2016,83:12-19.

[30]

MONSHIZADEH A. Influence of the molecular weight of cellulose on the solubility in ionic liquid-water mixtures[D]. Helsinki: Aalto University, 2015.

[31]

HALLAC B B, RAGAUSKAS A J. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol[J]. Biofuels,Bioproducts and Biorefining, 2011, 5(2):215-225.

[32]

OLSSON R T, KRAEMER R, LÓPEZ-RUBIO A, et al. Extraction of microfibrils from bacterial cellulose networks for electrospinning of anisotropic biohybrid fiber yarns[J]. Macromolecules, 2010, 43(9):4201-4209.

[33]

DESHAWAR D, GUPTA K, CHOKSHI P. Electrospinning of polymer solutions:an analysis of instability in a thinning jet with solvent evaporation[J]. Polymer, 2020,202:122656.

[34]

FILIP P, PEER P. Characterization of poly(ethylene oxide) nanofibers:mutual relations between mean diameter of electrospun nanofibers and solution characteristics[J]. Processes, 2019, 7(12):948.

[35]

GULZAR S, TAGRIDA M, NILSUWAN K, et al. Electrospinning of gelatin/chitosan nanofibers incorporated with tannic acid and chitooligosaccharides on polylactic acid film:characteristics and bioactivities[J]. Food Hydrocolloids, 2022,133:107916.

[36]

ANGEL N, LI S N, YAN F, et al. Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications[J]. Trends in Food Science & Technology, 2022,120:308-324.

[37]

MIT-UPPATHAM C, NITHITANAKUL M, SUPAPHOL P. Ultrafine electrospun polyamide-6 fibers:effect of solution conditions on morphology and average fiber diameter[J]. Macromolecular Chemistry and Physics, 2004, 205(17):2327-2338.

[38]

WADA M, NISHIYAMA Y, LANGAN P. X-ray structure of ammonia-cellulose I:new insights into the conversion of cellulose I to cellulose ⅢI[J]. Macromolecules, 2006, 39(8):2947-2952.

[39]

MITTAL A, KATAHIRA R, HIMMEL M E, et al. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose:changes in crystalline structure and effects on enzymatic digestibility[J]. Biotechnology for Biofuels, 2011,4:41.

[40]

ZHAO R H, CAI S Z, ZHAO Y T, et al. Enhanced stereo complex crystalline polylactic acids in melt processed enantiomeric bicomponent fiber configurations[J]. International Journal of Biological Macromolecules, 2023, 253(5):127123.

[41]

FRENCH A D. Idealized powder diffraction patterns for cellulose polymorphs[J]. Cellulose, 2014, 21(2):885-896.

[42]

WONG S S, KASAPIS S, TAN Y M. Bacterial and plant cellulose modification using ultrasound irradiation[J]. Carbohydrate Polymers, 2009, 77(2):280-287.

[43]

YANG S Y, LIU Z M, LIU Y P, et al. Effect of molecular weight on conformational changes of PEO:an infrared spectroscopic analysis[J]. Journal of Materials Science, 2015, 50(4):1544-1552.

[44]

ABOU-SEKKINA M M, SAKRAN M A, SAAFAN A A. Development of correlations among the spectral,structural,and electrical properties and chemical treatment of Egyptian cotton fabric strips[J]. Industrial & Engineering Chemistry Product Research and Development, 1986, 25(4):676-680.

[45]

BELGACEM M N, CZEREMUSZKIN G, SAPIEHA S, et al. Surface characterization of cellulose fibers by XPS and inverse gas chromatography[J]. Cellulose, 1995, 2(3):145-157.

[46]

JOHANSSON L S, CAMPBELL J M, ROJAS O J. Cellulose as the in situ reference for organic XPS.Why? Because it works[J]. Surface and Interface Analysis, 2020, 52(12):1134-1138.

[47]

MONGIOVÍ C, CRINI G, GABRION X, et al. Revealing the adsorption mechanism of copper on hemp-based materials through EDX,nano-CT,XPS,FTIR,Raman,and XANES characterization techniques[J]. Chemical Engineering Journal Advances, 2022,10:100282.

[48]

KAMDEM D P, RIEDL B, ADNOT A, et al. ESCA spectroscopy of poly(methyl methacrylate) grafted onto wood fibers[J]. Journal of Applied Polymer Science, 1991, 43(10):1901-1912.

[49]

JOHANSSON L S, CAMPBELL J M. Reproducible XPS on biopolymers:cellulose studies[J]. Surface and Interface Analysis, 2004, 36(8):1018-1022.

[50]

JOHANSSON L S, CAMPBELL J M, HÄNNINEN T, et al. XPS and the medium-dependent surface adaptation of cellulose in wood[J]. Surface and Interface Analysis, 2012, 44(8):899-903.

[51]

STARK N M, MATUANA L M. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy[J]. Polymer Degradation and Stability, 2004, 86(1):1-9.

[52]

NZOKOU P, PASCAL KAMDEM D. X-ray photoelectron spectroscopy study of red oak-(Quercus rubra),black cherry-(Prunus serotina) and red pine-(Pinus resinosa) extracted wood surfaces[J]. Surface and Interface Analysis, 2005, 37(8):689-694.

[53]

MAO P, QI L Y, LIU X D, et al. Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water[J]. Journal of Hazardous Materials, 2017,328:21-28.

[54]

JIANG X, YING D W, LIU X, et al. Identification of the role of Cu site in Ni-Cu hydroxide for robust and high selective electrochemical ammonia oxidation to nitrite[J]. Electrochimica Acta, 2020,345:136157.

[55]

KAUL L, ABDO A I, COENYE T, et al. The combination of diethyldithiocarbamate and copper ions is active against Staphylococcus aureus and Staphylococcus epidermidis biofilms in vitro and in vivo[J]. Frontiers in Microbiology, 2022, 13:999893.

[56]

KHANDELWAL M, KUMAWAT A, MISRA K P, et al. Efficient antibacterial activity in copper oxide nanoparticles biosynthesized via Jasminum sambac flower extract[J]. Particulate Science and Technology, 2023, 41(5):640-652.

[57]

KHASHAN K S, SULAIMAN G M, ABDULAMEER F A. Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid[J]. Arabian Journal for Science and Engineering, 2016, 41(1):301-310.

[58]

XING C L, CHANG J N, MA M, et al. Ultrahigh-efficiency antibacterial and adsorption performance induced by copper-substituted polyoxomolybdate-decorated graphene oxide nanocomposites[J]. Journal of Colloid and Interface Science, 2022,612:664-678.

Funding

Key Project of State Key Laboratory of Bio-Fibers and Eco-Textiles of Qingdao University, China(RZ2000003348)

High Level Talents Research Start-Up Fund, China(DC1900000746)

China Postdoctoral Science Foundation(2024M751568)

Shandong Province Postdoctoral Innovation Project, China(SDCX-ZG-202400294)

PDF (15802KB)

70

Accesses

0

Citation

Detail

Sections
Recommended

/