Surface Doping and Humidity Sensing of MoS2 Field-Effect Transistor by Oxygen Plasma Treatment

Haiyang JIANG , Jingyuan WU , Zhaoyang WEN , Bingbo GUO

Journal of Donghua University(English Edition) ›› 2024, Vol. 41 ›› Issue (2) : 130 -136.

PDF (4470KB)
Journal of Donghua University(English Edition) ›› 2024, Vol. 41 ›› Issue (2) :130 -136. DOI: 10.19884/j.1672-5220.202310006
Advanced Functional Materials
research-article

Surface Doping and Humidity Sensing of MoS2 Field-Effect Transistor by Oxygen Plasma Treatment

Author information +
History +
PDF (4470KB)

Abstract

Two-dimensional(2D) semiconducting transition metal dichalcogenides(TMDs) have unique electrical, optical and mechanical properties, and hold great potential for diverse applications such as digital circuits, light harvesting and energy storage. Controlling the electrical properties of TMDs through doping provides an effective approach for sensitive sensing. This paper presents the experimental study of the doping effect of oxygen plasma on molybdenum disulfide(MoS2). Firstly, the transport characteristics of the MoS2 field-effect transistor(FET) were investigated and the MoS2 FET exhibited p-type doping through plasma treatment. Then, the cause of the doping effect was further studied, and the doping effect was attributed to the formation of MoO3-like defects on the surface of the channel, confirmed by Raman spectroscopy. Finally, the humidity-sensing behavior of the plasma-treated MoS2 FET was studied. The MoS2 FET exhibited high sensitivity to humidity because of the increased adsorption centers for water molecules, with the source-drain current change of approximately 54% in humid environment. The work would provide a simple method to modify the electrical properties of TMDs and show potential for low-dimensional chemical sensors.

Keywords

field-effect transistor(FET) / molybdenum disulfide(MoS_2) / oxygen plasma / surface doping / humidity sensing

Cite this article

Download citation ▾
Haiyang JIANG, Jingyuan WU, Zhaoyang WEN, Bingbo GUO. Surface Doping and Humidity Sensing of MoS2 Field-Effect Transistor by Oxygen Plasma Treatment. Journal of Donghua University(English Edition), 2024, 41(2): 130-136 DOI:10.19884/j.1672-5220.202310006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HU Z H, LIU X, HERNÁNDEZ-MARTÍNEZ P L, et al. Interfacial charge and energy transfer in van der Waals heterojunctions[J]. InfoMat, 2022, 4(3):e12290.

[2]

ZHENG Y, GAO J, HAN C, et al. Ohmic contact engineering for two-dimensional materials[J]. Cell Reports Physical Science, 2021, 2(1):100298.

[3]

GOPALAN P, SENSALE-RODRIGUEZ B. 2D materials for terahertz modulation[J]. Advanced Optical Materials, 2020, 8(3):1900550.

[4]

WU J Y, JIANG H Y, WEN Z Y, et al. Fundamental and photodetector application of van der Waals Schottky junctions[J]. Advanced Devices & Instrumentation, 2023, 4:22.

[5]

WANG H Y, LI Z X, LI D Y, et al. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors[J]. Advanced Functional Materials, 2021, 31(30):2103106.

[6]

WU R X, TAO Q Y, LI J, et al. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre[J]. Nature Electronics, 2022, 5:497-504.

[7]

ZHOU Y Q, TONG L, CHEN Z F, et al. Vertical nonvolatile Schottky-barrier-field-effect transistor with self-gating semimetal contact[J]. Advanced Functional Materials, 2023, 33(19):2213254.

[8]

LI Q, MENG J P, LI Z. Recent progress on Schottky sensors based on two-dimensional transition metal dichalcogenides[J]. Journal of Materials Chemistry A, 2022, 10(15):8107-8128.

[9]

ZHANG W, HUANG J K, CHEN C H, et al. High-gain phototransistors based on a CVD MoS2 monolayer[J]. Advanced Materials, 2013, 25(25):3456-3461.

[10]

WU J Y, CHUN Y T, LI S, et al. Broadband MoS2 field-effect phototransistors:ultrasensitive visible-light photoresponse and negative infrared photoresponse[J]. Advanced Materials, 2018, 30(7):1705880.

[11]

WU W, WANG L, LI Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics[J]. Nature, 2014, 514(7523):470-474.

[12]

JIANG J, DHAR S. Tuning the threshold voltage from depletion to enhancement mode in a multilayer MoS2 transistor via oxygen adsorption and desorption[J]. Physical Chemistry Chemical Physics, 2016, 18(2):685-689.

[13]

BERTOLAZZI S, GOBBI M, ZHAO Y D, et al. Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides[J]. Chemical Society Reviews, 2018, 47(17):6845-6888.

[14]

HU Z H, WU Z T, HAN C, et al. Two-dimensional transition metal dichalcogenides:interface and defect engineering[J]. Chemical Society Reviews, 2018, 47(9):3100-3128.

[15]

KANG D H, SHIM J, JANG S K, et al. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane[J]. ACS Nano, 2015, 9(2):1099-1107.

[16]

LEE B J, LEE B J, LEE J, et al. Effects of plasma treatment on the electrical reliability of multilayer MoS2 field-effect transistors[J]. Thin Solid Films, 2017, 637:32-36.

[17]

KIM S, CHOI M S, QU D, et al. Effects of plasma treatment on surface properties of ultrathin layered MoS2[J]. 2D Materials, 2016, 3(3):035002.

[18]

YANG H, CAI S, WU D, et al. Humidity-dependent characteristics of few-layer MoS2 field effect transistors[J]. Advanced Electronic Materials, 2020, 6(11):2000659.

[19]

JADWISZCZAK J, KELLY D J, GUO J Q, et al. Plasma treatment of ultrathin layered semiconductors for electronic device applications[J]. ACS Applied Electronic Materials, 2021, 3(4):1505-1529.

[20]

KHAN M A, RATHI S, YUN S J, et al. Study of oxygen plasma induced modulation of photoconductivity in MoS2 field effect transistor[J]. Superlattices and Microstructures, 2020, 142:106507.

[21]

WANG Y, KIM J C, WU R J, et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors[J]. Nature, 2019, 568(7750):70-74.

[22]

KANG M, RATHI S, LEE I, et al. Tunable electrical properties of multilayer HfSe2 field effect transistors by oxygen plasma treatment[J]. Nanoscale, 2017, 9(4):1645-1652.

[23]

KANG D, KIM M, SHIM J, et al. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping[J]. Advance Functional Materials, 2015, 25(27):4219-4227.

[24]

ZHENG X M, ZHANG X A, WEI Y H, et al. Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment[J]. Nano Research, 2020, 13(4):952-958.

[25]

OH H M, JEONG H, HAN G H, et al. Modulating electronic properties of monolayer MoS2 via electron-withdrawing functional groups of graphene oxide[J]. ACS Nano, 2016, 10(11):10446-10453.

[26]

WU J Y, ZHOU H L, WANG S J, et al. Ligand-induced charge transport modulation and enhanced photoresponse in hybrid MoS2/quantum dot phototransistors[J]. Applied Surface Science, 2023, 617:156623.

[27]

WU J Y, CHUN Y T, LI S P, et al. Electrical rectifying and photosensing property of Schottky diode based on MoS2[J]. ACS Applied Materials & Interfaces, 2018, 10(29):24613-24619.

[28]

KANG N, PAUDEL H P, LEUENBERGER M N, et al. Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment[J]. Journal of Physical Chemistry C, 2014, 118(36):21258-21263.

[29]

CHOI W, CHO M Y, KONAR A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared[J]. Advanced Materials, 2012, 24(43):5832-5836.

[30]

JIANG Y L, WU Q. Electromagnetic and thermal characteristics of molybdenite concentrate in microwave field[J]. Journal of Donghua University (English Edition), 2023, 40 (6):600-609.

[31]

ZHOU X, CHEN J Y, WANG C R. PbI2/Pb5S2I6 van der Waals heterojunction photodetector[J]. Journal of Donghua University (English Edition), 2022, 39 (3):281-288.

[32]

MATHEW M, ROUT C S. Schottky diodes based on 2D materials for environmental gas monitoring:a review on emerging trends,recent developments and future perspectives[J]. Journal of Materials Chemistry C, 2021, 9(2):395-416.

Funding

National Natural Science Foundation of China(62005042)

PDF (4470KB)

74

Accesses

0

Citation

Detail

Sections
Recommended

/