Design and Fabrication of Flexible Thermoelectric String-Based Fabrics

Hasib Ud Din AHMAAD , Minzhi DU , Xue HAN , Yuanyuan JING , Xiaona YANG , Juan ZHANG , Xinyi CHEN , Rashedul Islam SYED , Fuli HUANG , Jinchuan XU , Kun ZHANG

Journal of Donghua University(English Edition) ›› 2024, Vol. 41 ›› Issue (5) : 474 -481.

PDF (8452KB)
Journal of Donghua University(English Edition) ›› 2024, Vol. 41 ›› Issue (5) :474 -481. DOI: 10.19884/j.1672-5220.202305007
Advanced Functional Materials
research-article

Design and Fabrication of Flexible Thermoelectric String-Based Fabrics

Author information +
History +
PDF (8452KB)

Abstract

Flexible thermoelectric(TE) materials that convert heat into electricity have been widely used in wearable electronics and other flexible devices. In this work, inorganic TE pillars were combined with thermoplastic polyurethane(TPU) to assemble a flexible string-shaped TE generator(TEG) for the fabrication of the thermoelectric fabric(TEF). Moreover, finite element analysis(FEA) was used to optimize the dimensions of the TE string and evaluate its performance. The FEA results showed that the inter-pillar spacing significantly affected the temperature difference, the output voltage and the internal resistance. A maximum power density of 3.43 μW/cm2(temperate gradient ΔT=10.5 K) was achieved by the TE string with a diameter of 3.5 mm and an inter-pillar spacing of 2 mm. However, under the experimental condition, the achievable power density of the fabricated three-dimensional(3D) TEF was limited to 29% of the simulation result because of the inclination of the TE string within the fabric concerning heat plate contact and copper wire-TE pillar connections. The actual TE string also demonstrated high flexibility and stable mechanical properties after 450 bending cycles. Thus, the study would provide a foundation for future research in developing more efficient TEFs to offer a comfortable and conformable option for wearable energy harvesting applications.

Keywords

thermoelectric fabric(TEF) / thermoelectric(TE) pillar / thermoplastic polyurethane(TPU) / finite element analysis(FEA)

Cite this article

Download citation ▾
Hasib Ud Din AHMAAD, Minzhi DU, Xue HAN, Yuanyuan JING, Xiaona YANG, Juan ZHANG, Xinyi CHEN, Rashedul Islam SYED, Fuli HUANG, Jinchuan XU, Kun ZHANG. Design and Fabrication of Flexible Thermoelectric String-Based Fabrics. Journal of Donghua University(English Edition), 2024, 41(5): 474-481 DOI:10.19884/j.1672-5220.202305007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TOHIDI F, GHAZANFARI HOLAGH S, CHITSAZ A. Thermoelectric generators:a comprehensive review of characteristics and applications[J]. Applied Thermal Engineering, 2022,201:117793.

[2]

YANG T T, XIE D, LI Z H, et al. Recent advances in wearable tactile sensors:materials,sensing mechanisms,and device performance[J]. Materials Science and Engineering R:Reports, 2017,115:1-37.

[3]

WANG X W, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small, 2017, 13(25):1602790.

[4]

SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008,7:105-114.

[5]

LIU H, QING H, LI Z, et al. Paper:a promising material for human-friendly functional wearable electronics[J]. Materials Science and Engineering R:Reports, 2017,112:1-22.

[6]

CAO T Y, SHI X L, CHEN Z G. Advances in the design and assembly of flexible thermoelectric device[J]. Progress in Materials Science, 2023,131:101003.

[7]

SAEED M, SEAMUS O, AMIR P. Organic-based flexible thermoelectric generators:from materials to devices[J]. Nano Energy, 2022,92:106774.

[8]

GUO Z P, YU Y D, ZHU W, et al. Kirigami-based stretchable,deformable,ultralight thin-film thermoelectric generator for BodyNET application[J]. Advanced Energy Materials, 2022, 12(5):2102993.

[9]

ELEONORA I, JACOB A, UBAIDAH S, et al. Towards low cost and sustainable thin film thermoelectric devices based on quaternary chalcogenides[J]. Advanced Functional Materials, 2022, 32(32):2202157.

[10]

VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001,413:597-602.

[11]

LIU H Y, WANG Y C, MEI D Q, et al. Design of a wearable thermoelectric generator for harvesting human body energy[C]//Wearable Sensors and Robots. Singapore: Springer, 2017:55-66.

[12]

KIM S J, LEE H E, CHOI H, et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process[J]. ACS Nano, 2016, 10(12):10851-10857.

[13]

WANG Y, HONG M, LIU W D, et al. Bi0.5Sb1.5Te3/PEDOT:PSS-based flexible thermoelectric film and device[J]. Chemical Engineering Journal, 2020,397:125360.

[14]

YANG Y, HU H J, CHEN Z Y, et al. Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces[J]. Nano Letters, 2020, 20(6):4445-4453.

[15]

TZOUNIS L, PETOUSIS M, GRAMMATIKOS S, et al. 3D printed thermoelectric polyurethane/multiwalled carbon nanotube nanocomposites:a novel approach towards the fabrication of flexible and stretchable organic thermoelectrics[J]. Materials, 2020, 13(12):2879.

[16]

KIM S J, WE J H, CHO B J. A wearable thermoelectric generator fabricated on a glass fabric[J]. Energy & Environmental Science, 2014, 7(6):1959-1965.

[17]

CAO Z, TUDOR M J, TORAH R N, et al. Screen printable flexible BiTe-SbTe-based composite thermoelectric materials on textiles for wearable applications[J]. IEEE Transactions on Electron Devices, 2016, 63(10):4024-4030.

[18]

CHOI J, JUNG Y, YANG S J, et al. Flexible and robust thermoelectric generators based on all-carbon nanotube yarn without metal electrodes[J]. ACS Nano, 2017, 11(8):7608-7614.

[19]

ZHENG Y Y, ZHANG Q H, JIN W L, et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics[J]. Journal of Materials Chemistry A, 2020, 8(6):2984-2994.

[20]

ZHENG Y Y, HAN X, YANG J W, et al. Durable,stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling[J]. Energy & Environmental Science, 2022, 15(6):2374-2385.

[21]

ZHANG R Q, LI D J, DU L J, et al. Design and weaving of flexible fabric connection for electronic clothing[J]. Technical Textiles, 2014, 32(2):13-15,19. (in Chinese)

[22]

BAI Y F, XIE E X, LI Q, et al. Fabrication and characterization of yarn-based temperature sensor for respiratory monitoring[J]. Journal of Donghua University(English Edition), 2022, 39(6):527-532.

[23]

ELLEUCH R, ELLEUCH K, SALAH B, et al. Tribological behavior of thermoplastic polyurethane elastomers[J]. Materials and Design, 2007, 28(3):824-830.

[24]

KOJIO K, FURUKAWA M, NONAKA Y, et al. Control of mechanical properties of thermoplastic polyurethane elastomers by restriction of crystallization of soft segment[J]. Materials, 2010, 3(12):5097-5110.

[25]

AO D W, LIU W D, ZHENG Z H, et al. Assembly-free fabrication of high-performance flexible inorganic thin-film thermoelectric device prepared by a thermal diffusion[J]. Advanced Energy Materials, 2022, 12(42):2202731.

[26]

ZHAO X, HAN W J, ZHAO C S, et al. Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology[J]. ACS Applied Materials & Interfaces, 2019, 11(10):10301-10309.

[27]

SUAREZ F, PAREKH D P, LADD C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics[J]. Applied Energy, 2017,202:736-745.

Funding

National Natural Science Foundation of China(51973034)

Natural Science Foundation of Shanghai, China(23ZR1402500)

Fundamental Research Funds for the Central Universities, China(2232022G01)

Fundamental Research Funds for the Central Universities, China(19D110106)

PDF (8452KB)

62

Accesses

0

Citation

Detail

Sections
Recommended

/