PDF
(4183KB)
Abstract
For developing an efficient solar cooling technology, a novel coupled system comprising a photovoltaic(PV) module and a van der Waals heterostructure(vdWH)-based thermionic refrigerator(TIR) is established. With full consideration of internal and external irreversibility, the theoretical model of the coupled system is constructed, and mathematical expressions for the key performance indicators are derived. On this basis, the general properties of the coupled system are investigated, and the voltage region permitting the system to operate is determined. According to the calculations, the maximum refrigerating capacity and the maximum coefficient of performance(COP) are 75.88 W and 0.49, respectively. Furthermore, sensitivity analyses are conducted to derive the regularity and magnitude of the impacts of critical parameters on the overall performance of the coupled system, including solar irradiance, effective Schottky barrier height, inter-layer thermal resistance, external thermal resistance, heat leakage thermal resistance and hot reservoir temperature. The obtained outcomes may contribute to the design and operation of practical coupled systems.
Keywords
photovoltaic(PV) module
/
thermionic refrigerator(TIR)
/
van der Waals heterostructure(vdWH)
/
coupling characteristic
/
sensitivity assessment
Cite this article
Download citation ▾
Zhen LU, Yuewu HUANG.
Performance Evaluation of a Photovoltaic Module-Driven van der Waals Heterostructure-Based Thermionic Refrigerator.
Journal of Donghua University(English Edition), 2024, 41(2): 146-155 DOI:10.19884/j.1672-5220.202304007
| [1] |
PAMBUDI N A, SARIFUDIN A, FIRDAUS R A, et al. The immersion cooling technology:current and future development in energy saving[J]. Alexandria Engineering Journal, 2022, 61(12):9509-9527.
|
| [2] |
SHARMA G, NARAYANAN K, ADEFARATI T, et al. Frequency regularization of a linked wind-diesel system using dual structure fuzzy with ultra-capacitor[J]. Protection and Control of Modern Power Systems, 2022, 7(1):12.
|
| [3] |
YANG D Z, KLEISSL J, GUEYMARD C A, et al. History and trends in solar irradiance and PV power forecasting:a preliminary assessment and review using text mining[J]. Solar Energy, 2018,168:60-101.
|
| [4] |
KABIR E, KUMAR P, KUMAR S, et al. Solar energy:potential and future prospects[J]. Renewable & Sustainable Energy Reviews, 2018,82:894-900.
|
| [5] |
DANANDEH M A, MOUSAVI G S M. Comparative and comprehensive review of maximum power point tracking methods for PV cells[J]. Renewable and Sustainable Energy Reviews, 2018,82:2743-2767.
|
| [6] |
ELAVARASAN R M, MUDGAL V, SELVAMANOHAR L, et al. Pathways toward high-efficiency solar photovoltaic thermal management for electrical,thermal and combined generation applications:a critical review[J]. Energy Conversion and Management, 2022,255:115278.
|
| [7] |
LAZZARIN R M, NORO M.Past, present,future of solar cooling:technical and economical considerations[J]. Solar Energy, 2018,172:2-13.
|
| [8] |
ALLOUHI A, KOUSKSOU T, JAMIL A, et al. Solar driven cooling systems:an updated review[J]. Renewable and Sustainable Energy Reviews, 2015,44:159-181.
|
| [9] |
SAIKIA K, VALLÈS M, FABREGAT A, et al. A bibliometric analysis of trends in solar cooling technology[J]. Solar Energy, 2020,199:100-114.
|
| [10] |
DAI Y J, WANG R Z, NI L. Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells[J]. Solar Energy Materials and Solar Cells, 2003, 77(4):377-391.
|
| [11] |
CHENG T C, CHENG C H, HUANG Z Z, et al. Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications[J]. Energy, 2011, 36(1):133-140.
|
| [12] |
ZHAO Q, ZHANG H C, HU Z Y, et al. Performance prediction of a new solar-driven electrochemical refrigerator[J]. Applied Thermal Engineering, 2020,178:115589.
|
| [13] |
LONG R, LI B D, LIU Z C, et al. Performance analysis of a solar-powered electrochemical refrigerator[J]. Chemical Engineering Journal, 2016,284:325-332.
|
| [14] |
LIAO T J, HE Q J, XU Q D, et al. Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system[J]. Energy, 2021,220:119798.
|
| [15] |
MAHAN G D. Thermionic refrigeration[J]. Journal of Applied Physics, 1994, 76(7):4362-4366.
|
| [16] |
HISHINUMA Y, MOYZHES B Y, GEBALLE T H, et al. Vacuum thermionic refrigeration with a semiconductor heterojunction structure[J]. Applied Physics Letters, 2002, 81(22):4242-4244.
|
| [17] |
AÇIKKALP E, YEREL KANDEMIR S, AHMADI M H. Performance evaluation of the thermophotovoltaic-driven thermoionic refrigerator[J]. Journal of Energy Resources Technology, 2020, 142(3):032001.
|
| [18] |
ZIABARI A, ZEBARJADI M, VASHAEE D, et al. Nanoscale solid-state cooling:a review[J]. Reports on Progress in Physics, 2016, 79(9):095901.
|
| [19] |
DING Z M, CHEN L G, SUN F R. Performance analysis and optimization of a single-barrier solid-state thermionic refrigerator with external heat transfer[J]. Heat Transfer Engineering, 2012, 33(8):693-703.
|
| [20] |
SHAKOURI A, BOWERS J E. Heterostructure integrated thermionic coolers[J]. Applied Physics Letters, 1997, 71(9):1234-1236.
|
| [21] |
MAHAN G D, WOODS L M. Multilayer thermionic refrigeration[J]. Physical Review Letters, 1998, 80(18):4016-4019.
|
| [22] |
FAN X F, ZENG G H, LABOUNTY C, et al. SiGeC/Si superlattice microcoolers[J]. Applied Physics Letters, 2001, 78(11):1580-1582.
|
| [23] |
LI J, YANG X D, LIU Y, et al. General synthesis of two-dimensional van der Waals heterostructure arrays[J]. Nature, 2020, 579(7799):368-374.
|
| [24] |
QIU S S, DING Z M, CHEN L G. Performance evaluation and parametric optimum design of irreversible thermionic generators based on van der Waals heterostructures[J]. Energy Conversion and Management, 2020,225:113360.
|
| [25] |
WANG X M, ZEBARJADI M, ESFARJANI K. High-performance solid-state thermionic energy conversion based on 2D van der Waals heterostructures:a first-principles study[J]. Scientific Reports, 2018,8:9303.
|
| [26] |
QIU S S, DING Z M, CHEN L G, et al. Performance optimization of thermionic refrigerators based on van der Waals heterostructures[J]. Science China Technological Sciences, 2021, 64(5):1007-1016.
|
| [27] |
LIANG S J, LIU B, HU W, et al. Thermionic energy conversion based on graphene van der Waals heterostructures[J]. Scientific Reports, 2017,7:46211.
|
| [28] |
LIU Y, HUANG Y, DUAN X F. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748):323-333.
|
| [29] |
ROSUL M G, LEE D, OLSON D H, et al. Thermionic transport across gold-graphene-WSe2 van der Waals heterostructures[J]. Science Advances, 2019, 5(11):eaax7827.
|
| [30] |
CAI Y, WANG W W, WANG L, et al. A proton exchange membrane fuel cell-compound thermoelectric system:bidirectional modeling and energy conversion potentials[J]. Energy Conversion and Management, 2020,207:112517.
|
| [31] |
HUANG Y W, LI D Y, CHEN Z. Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices[J]. Energy, 2022,260:125102.
|
| [32] |
LIAO T J, LIN B H, YANG Z M. Performance characteristics of a low concentrated photovoltaic-thermoelectric hybrid power generation device[J]. International Journal of Thermal Sciences, 2014,77:158-164.
|
| [33] |
ZHANG X N, HUANG Y W, CHEN Z. Performance evaluation of an integrated photovoltaic module and cascading thermally regenerative electrochemical devices system[J]. Energy Conversion and Management, 2022,264:115737.
|
| [34] |
LE PIERRÈS N, COSNIER M, LUO L G, et al. Coupling of thermoelectric modules with a photovoltaic panel for air pre-heating and pre-cooling application;an annual simulation[J]. International Journal of Energy Research, 2008, 32(14):1316-1328.
|
| [35] |
ZHANG X N, HUANG Y W, CHEN Z. A hybrid system integrating photovoltaic module and thermoelectric devices for power and cooling cogeneration[J]. Solar Energy, 2022,239:350-358.
|
| [36] |
CHEN X G, HUANG Y W, CHEN Z. Energy and exergy analysis of an integrated photovoltaic module and two-stage thermoelectric generator system[J]. Applied Thermal Engineering, 2022,212:118605.
|
| [37] |
ZHAO Q, ZHANG H C, HU Z Y, et al. A solar driven hybrid photovoltaic module/direct contact membrane distillation system for electricity generation and water desalination[J]. Energy Conversion and Management, 2020,221:113146.
|
| [38] |
CHEN L G, DING Z M, SUN F R. Performance analysis of a vacuum thermionic refrigerator with external heat transfer[J]. Journal of Applied Physics, 2010, 107(10):104507.
|
| [39] |
LIANG S J, ANG L K. Electron thermionic emission from graphene and a thermionic energy converter[J]. Physical Review Applied, 2015,3:014002.
|
| [40] |
SATA Y, MORIYA R, MORIKAWA S, et al. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface[J]. Applied Physics Letters, 2015, 107(2):023109.
|
| [41] |
Suniva optimus® series monocrystalline solar modules[EB/OL].(2018-05-25)[2023-04-01]. https://unboundsolar.com/1524436/suniva/solar-panels/suniva%02opt285-60-4-100-silver-mono-solar-panel.
|
| [42] |
SACHENKO A V, KRYUCHENKO Y V, KOSTYLYOV V P, et al. Temperature dependence of photoconversion efficiency in silicon heterojunction solar cells:theory vs experiment[J]. Journal of Applied Physics, 2016, 119(22):225702.
|
| [43] |
WU S Y, ZHONG Z H, XIAO L, et al. Performance analysis on a novel photovoltaic-hydrophilic modified tubular seawater desalination (PV-HMTSD) system[J]. Desalination, 2021,499:114829.
|
| [44] |
SEME S, ŠTUMBERGER B, HADŽISELIMOVIČ M, et al. Solar photovoltaic tracking systems for electricity generation:a review[J]. Energies, 2020, 13(16):4224.
|