Special Issue:Space Gravitational Wave Detection

Progress and Prospect of the Lunar-Based Gravitational-Wave Detection

Expand
  • 1. Beijing Institute of Space Mechanics and Electricity,Beijing 100094,China;
    2. School of Physical Science and Technology,Lanzhou University, Lanzhou 730000,China;
    3. DFH Satellite Co., Ltd.,Beijing 100094,China;
    4. Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China;
    5. Institute of High Energy Physics,Chinese Academy of Sciences, Beijing 100049,China;
    6. Shanxi University,Taiyuan 237016,China;
    7. Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China;
    8. Beijing Azspace Technology Co., Ltd,Beijing 100190,China

Received date: 09 Dec 2022

Revised date: 15 May 2023

Published date: 17 Oct 2023

Abstract

To observe the frequency in the range of 0.1 Hz to 5 Hz in lunar-based gravitational-wave detection and improve the sensitivity of gravitational-wave detection, a method of lunar-based gravitational-wave detection was proposed. Based on a brief introduction to the mathematical description and properties of gravitational waves, this paper gave a brief introduction to existing gravitational-wave detectors and compared the lunar-based observatories with the space and Earth-based detectors. Lunar-based detectors that have been proposed, such as Gravitational-wave Lunar Observatories for Cosmology (GLOC), Lunar Gravitational-Wave Antenna (LGWA), etc., are briefly introduced. The critical technique is also discussed and alternative solutions are given. The possible main noise sources and corresponding impact magnitudes for lunar-based gravitational wave detection were discussed. Also, the future development of the lunar-based gravitational wave detection is prospected.

Cite this article

WU Kailan, LIN Xuling, ZHENG Yongchao, LI Ming, BIAN Xing, WANG Yunyong, HUO Hongqing, NIU Jiashu, JIA Jianjun, ZHANG Xiaomin . Progress and Prospect of the Lunar-Based Gravitational-Wave Detection[J]. Journal of Deep Space Exploration, 2023 , 10(3) : 247 -256 . DOI: 10.15982/j.issn.2096-9287.2023.20220110

References

[1] JANI K,LOEB A. Gravitational-wave lunar observatory for cosmology[J]. Journal of Cosmology and Astroparticle Physics,2021,2021(6):44
[2] 龚雪飞,徐生年,袁业飞,等. 空间激光干涉引力波探测与早期宇宙结构形成[J]. 天文学进展,2015,33(1):59-83.
GONG X F, XU S N, YUAN Y F, et al. , Laser interferometric gravitational wave detection in space and structure formation in the early universe[J]. Progress in Astronomy,2015, 33(1): 59-83.
[3] MANCHESTER R N. The international pulsar timing array[J]. Classical and Quantum Gravity,2013,30(22):55-61
[4] SEDDA M A,BERRY C P L,JANI K,et al. The missing link in gravitational-wave astronomy[J]. Exp Astron,2021,51:1427-1440
[5] JOHNSON F S,CARROLL J M,EVANS D E. Vacuum measurements on the lunar surface[J]. Journal of Vacuum Science & Technology,1972,9(1):450-456
[6] 王运永. 引力波探测[M]. 北京:科学出版社,2020:7-210.
[7] 罗子人,白姗,边星,等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447.
LUO Z R, BAI S, BIAN X, et al. , Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics,2013, 43(4): 415-447.
[8] HARMS J,AMBROSINO F,ANGELINI L. Lunar gravitational-wave antenna[J]. The Astrophysical Journal,2021,910(1):1-22
[9] HARMS J. Seismic background limitation of lunar gravitational-wave detectors[J]. Physical Review Letters,2022,129(7):071102
[10] ROBIN M C. Simulations of a late lunar-forming impact[J]. Icarus,2004,168(2):433-456
[11] KATSANEVAS S,BERNARD P,GIARDINI D ,et al. Ideas for exploring the Moon with a large European lander (ESA,2020)[EB/OL]. (2020)[2022-12-09]. https://ideas.esa.int/servlet/hype/IMT?documentTableId=45087607031744010&userAction=Browse&templateName=&documentId=a315450fae481074411ef65e4c5b7746.
[12] WILLIAMS J P,PAIGE D A,GREENHAGEN B T,et al. The global surface temperatures of the Moon as measured by the diviner lunar radiometer experiment[J]. Icarus,2017,283:300-325
[13] PAIGE D A,SIEGLER M A,ZHANG J A,et al. Diviner lunar radiometer observations of cold traps in the Moon's south polar region[J]. Science,2010,330(6003):479-482
[14] DUZELLIER S. Radiation effects on electronic devices in space[J]. Aerospace Science and Technology,2005,9(1):93-99
[15] JORDAN A P,STUBBS T J,WILSON J K,et al. Deep dielectric charging of regolith within the Moon's permanently shadowed regions[J]. Journal of Geophysical Research Planets,2015,119(8):1806-1821
[16] ELLIOTT J,ALKALAI L. Lunette:a low-cost concept enabling multi-lander lunar science and exploration missions[J]. Acta Astronautica,2010,66(1):269-278
[17] WILSON T L,LAFAVE N,Lunar LIGO and gravitational wave astronomy on the Moon[C]//Proceedings of Lunar and Planetary Science Conference. Houston:[s. n. ],1994:1499.
[18] BILODEAU V S,CLERC S,DRAI R,et al. Optical navigation system for pin-point lunar landing[J]. IFAC Proceedings Volumes, 2014, 47(3):10535-10542.
[19] SHOEMAKER D H. Editorial note to:Electromagnetically coupled broadband gravitational antenna by Rainer Weiss[J]. Gen Relativ Gravit,2022,54:152-174
[20] HEIJNINGEN J,TER BRAKE M,GERBERDING O,et al. The payload of the Lunar Gravitational-wave Antenna[EB/OL]. (2022-12-09)[2023]. https://doi.org/10.48550/arXiv.2301.13685.
[21] LOGNONNÉ P,LE FEUVRE M,JOHNSON C L,et al,Moon meteoritic seismic hum:steady state prediction[J]. Journal of Geophysical Research:Planets,2009,114(E12003).
Outlines

/