[1] 王帅,郭文博,李鹏. 阿联酋希望号探测器抵达火星[J]. 国际太空,2021(3):16-19
[2] 王帅,李鹏,郭文博,等. 美国毅力号火星车成功着陆火星[J]. 国际太空,2021(3):10-15
[3] 张荣桥,耿言,孙泽洲,等. 天问一号任务的技术创新[J]. 航空学报,2022,43(3):626689
ZHANG R Q,GENG Y,SUN Z Z,et al. Technical innovations of the Tianwen-1 mission[J]. Acta Aeronautica et Astronautica Sinica,2022,43(3):626689
[4] 饶炜,孙泽洲,董捷,等. 天问一号火星进入、下降与着陆系统设计与实现[J]. 中国科学:技术科学,2022,52(8):1162-1174
RAO W,SUN Z Z,DONG J,et al. Design and implementaition of the Mars entry,descent,and landing for the Tianwen-1 mission[J]. Science China:Technological Science,2022,52(8):1162-1174
[5] 孙泽洲,饶炜,贾阳,等. “天问一号”火星探测器关键任务系统设计[J]. 空间控制技术与应用,2021,47(5):9-16
SUN Z Z,RAO W,JIA Y,et al. Key mission system design of Tianwen-1 Mars probe[J]. Aerospace Control and Application,2021,47(5):9-16
[6] 朱新波,谢攀,徐亮,等. “天问一号”火星环绕器总体设计综述[J]. 航天返回与遥感,2021,42(3):1-12
ZHU X B,XIE P,XU L,et al. Sumary of the overall design of Mars orbiter of Tianwen-1[J]. Spacecraft Recovery & Remote Sensing,2021,42(3):1-12
[7] NASA. NASA will inspire world when it returns Mars samples to Earth in 2033[EB/OL]. [2022-7-27](2023-1-3). https://mars.nasa.gov/news/9233/nasa-will-inspire-world-when-it-returns-mars-samples-to-earth-in-2033/.
[8] GRADY M M. Exploring Mars with returned samples[J]. Space Science Reviews,2020,216(4):51
[9] SAWADA H,KATO H,SATOU Y,et al. The MMX Sampler for Phobos sample return mission[C]//2021 IEEE Aerospace Conference (50100). Big Sky,MT,USA:IEEE,2021.
[10] CAMPAGNOLA S,YAM C H,TSUDA Y,et al. Mission analysis for the Martian Moons Explorer (MMX) mission[J]. Acta Astronautica,2018,146:409-417
[11] 张智,容易,秦曈,等. 重型运载火箭总体技术研究[J]. 载人航天,2017,23(1):1-7
ZHANG Z,RONG Y,QIN T,et al. Research on overall technology of heavy launch vehicle[J]. Mannned Spaceflight,2017,23(1):1-7
[12] 洪刚,戚峰,王建明,等. 载人登陆火星任务核热推进系统方案研究[J]. 载人航天,2018,24(1):102-106
HONG G,QI F,WANG J M,et al. Nuclear thermal propulsion system design for manned Mars mission[J]. Mannned Spaceflight,2018,24(1):102-106
[13] ORTORE E,CINELLI M,CIRCI C. A ground track-based approach to design satellite constellations[J]. Aerospace Science and Technology,2017,69:458-464
[14] 宝音贺西,马鹏斌. 火星探测器自主导航方法综述[J]. 飞控与探测,2018,1(1):34-40
BAOYIN H X,MA P B. Overview of autonomous navigation method for Mars probe[J]. Flight Control & Detection,2018,1(1):34-40
[15] 王大轶,黄翔宇. 深空探测转移段光学成像测量自主导航及仿真验证技术[J]. 控制理论与应用,2014,31(12):1714-1722
WANG D Y,HUANG X Y. Autonomous optical navigation for deep space transfer phase and its simulation verification[J]. Control Theory & Applications,2014,31(12):1714-1722
[16] 崔文,张少愚,张树瑜,等. 火星探测接近段的光学自主导航研究[J]. 空间科学学报,2013,33(3):313-319
CUI W,ZHANG S Y,ZHANG S Y,et al. Research on optical autonomous navigation for approach phase of Mars exploration[J]. Chinese Journal of Space Science,2013,33(3):313-319
[17] 毛晓艳,王大轶,辛优美,等. 深空光学敏感器“拖尾图像”的处理方法研究[J]. 空间控制技术与应用,2010,36(2):1-5+19
MAO X Y,WANG D Y,XIN Y M,et al. Processing method of “trailed image” for deep space optical sensor[J]. Aerospace Control and Application,2010,36(2):1-5+19
[18] 吴伟仁,马辛,宁晓琳. 火星探测器转移轨道的自主导航方法[J]. 中国科学:信息科学,2012,42(8):936-948
WU W R,MA X,NING X L. Autonomous navigation method with high accuracy for cruise phase of Mars probe[J]. Science China Information Sciences,2012,42(8):936-948
[19] 房建成,宁晓琳,马辛,等. 深空探测器自主天文导航技术综述[J]. 飞控与探测,2018,1(1):1-15
FANG J C,NING X L,MA X,et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control & Detection,2018,1(1):1-15
[20] RAYMOND K R,MORTARI D. Interplanetary autonomous navigation using visible planets[J]. Journal of Guidance,Control,and Dynamics,2015,38(6):1151-1156
[21] NING X L,WANG F,FANG J C. Implicit UKF and its observability analysis of satellite stellar refraction navigation system[J]. Aerospace Science and Technology,2016,54:49-58
[22] WANG R,XIONG Z,LIU J,et al. A new tightly-coupled INS/CNS integrated navigation algorithm with weighted multi-stars observations[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2016,230(4):698-712
[23] RAYMAN M D,VARGHESE P,LEHMAN D H,et al. Results from the Deep Space 1 technology validation mission[J]. Acta Astronautica,2000,47(2-9):475-487.
[24] KLIONER S A. A practical relativistic model for microarcsecond astrometry in space[J]. The Astronomical Journal,2003,125(3):1580
[25] SHUSTER M D. Stellar aberration and parallax:a tutorial[J]. The Journal of the astronautical sciences,2003,51:477-494
[26] LI M Z ,SUN J, PENG Y,et al. Observability and performance analysis of spacecraft autonomous navigation using stellar aberration observation[C]//2021 5th International Conference on Vision,Image and Signal Processing (ICVISP). Kuala Lumpur:IEEE,2021.
[27] XIONG K,WEI C. Integrated celestial navigation for spacecraft using interferometer and earth sensor[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2020,234(16):2248-2262
[28] CHRISTIAN J A,LIGHTSEY E G. Review of options for autonomous cislunar navigation[J]. Journal of Spacecraft and Rockets,2009,46(5):1023-1036
[29] GIFT S J G. Light speed variation in stellar aberration[J]. Physics Essays,2009,22(2):83.
[30] CHRISTIAN J A. StarNAV:autonomous optical navigation of a spacecraft by the relativistic perturbation of starlight[J]. Sensors,2019,19(19):4064