Celestial Angle Measurement Navigation for Mars Probe Considering Relativistic Effect

GUI Mingzhen1, WEI Yifeng1, NING Xiaolin2

PDF(1347 KB)
PDF(1347 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (2) : 126-132. DOI: 10.15982/j.issn.2096-9287.2023.20230001
Topic: Celestial Navigation Technology for Deep Space Exploration

Celestial Angle Measurement Navigation for Mars Probe Considering Relativistic Effect

  • GUI Mingzhen1, WEI Yifeng1, NING Xiaolin2
Author information +
History +

Abstract

Celestial navigation based on star angle is a classical autonomous navigation method for spacecraft. By measuring the angular relationship between spacecraft,near celestial bodies and background stars,the current position and velocity information of spacecraft can be deduced. However,the effect of general relativity causes the starlight from a star to be somewhat deflected as it passes through a massive object,and special relativity allows high-speed spacecraft to observe stellar aberration. These two factors will cause the difference between the actual measurement of spacecraft and the corresponding information in the ephemeris,and then affect the navigation accuracy. To solve this problem,a celestial navigation method considering relativistic effect was proposed in this paper. The star angle measurement model is correct by relativistic effect to conform to the actual observation result,so as to improve the navigation accuracy. The simulation result shows that the proposed method can effectively correct the influence of relativistic effect on spacecraft star angle navigation in Mars surrounding orbit. When the star sensor measurement error is 3″ and the Mars sensor measurement error is 0.05°,the corrected average position error and average velocity error are reduced by 13.97% and 13.89% respectively,compared with the uncorrected case.

Keywords

Mars exploration / autonomous navigation / star angle / relativity / stellar aberration

Cite this article

Download citation ▾
GUI Mingzhen, WEI Yifeng, NING Xiaolin. Celestial Angle Measurement Navigation for Mars Probe Considering Relativistic Effect. Journal of Deep Space Exploration, 2023, 10(2): 126‒132 https://doi.org/10.15982/j.issn.2096-9287.2023.20230001

References

[1] 王帅,郭文博,李鹏. 阿联酋希望号探测器抵达火星[J]. 国际太空,2021(3):16-19
[2] 王帅,李鹏,郭文博,等. 美国毅力号火星车成功着陆火星[J]. 国际太空,2021(3):10-15
[3] 张荣桥,耿言,孙泽洲,等. 天问一号任务的技术创新[J]. 航空学报,2022,43(3):626689
ZHANG R Q,GENG Y,SUN Z Z,et al. Technical innovations of the Tianwen-1 mission[J]. Acta Aeronautica et Astronautica Sinica,2022,43(3):626689
[4] 饶炜,孙泽洲,董捷,等. 天问一号火星进入、下降与着陆系统设计与实现[J]. 中国科学:技术科学,2022,52(8):1162-1174
RAO W,SUN Z Z,DONG J,et al. Design and implementaition of the Mars entry,descent,and landing for the Tianwen-1 mission[J]. Science China:Technological Science,2022,52(8):1162-1174
[5] 孙泽洲,饶炜,贾阳,等. “天问一号”火星探测器关键任务系统设计[J]. 空间控制技术与应用,2021,47(5):9-16
SUN Z Z,RAO W,JIA Y,et al. Key mission system design of Tianwen-1 Mars probe[J]. Aerospace Control and Application,2021,47(5):9-16
[6] 朱新波,谢攀,徐亮,等. “天问一号”火星环绕器总体设计综述[J]. 航天返回与遥感,2021,42(3):1-12
ZHU X B,XIE P,XU L,et al. Sumary of the overall design of Mars orbiter of Tianwen-1[J]. Spacecraft Recovery & Remote Sensing,2021,42(3):1-12
[7] NASA. NASA will inspire world when it returns Mars samples to Earth in 2033[EB/OL]. [2022-7-27](2023-1-3). https://mars.nasa.gov/news/9233/nasa-will-inspire-world-when-it-returns-mars-samples-to-earth-in-2033/.
[8] GRADY M M. Exploring Mars with returned samples[J]. Space Science Reviews,2020,216(4):51
[9] SAWADA H,KATO H,SATOU Y,et al. The MMX Sampler for Phobos sample return mission[C]//2021 IEEE Aerospace Conference (50100). Big Sky,MT,USA:IEEE,2021.
[10] CAMPAGNOLA S,YAM C H,TSUDA Y,et al. Mission analysis for the Martian Moons Explorer (MMX) mission[J]. Acta Astronautica,2018,146:409-417
[11] 张智,容易,秦曈,等. 重型运载火箭总体技术研究[J]. 载人航天,2017,23(1):1-7
ZHANG Z,RONG Y,QIN T,et al. Research on overall technology of heavy launch vehicle[J]. Mannned Spaceflight,2017,23(1):1-7
[12] 洪刚,戚峰,王建明,等. 载人登陆火星任务核热推进系统方案研究[J]. 载人航天,2018,24(1):102-106
HONG G,QI F,WANG J M,et al. Nuclear thermal propulsion system design for manned Mars mission[J]. Mannned Spaceflight,2018,24(1):102-106
[13] ORTORE E,CINELLI M,CIRCI C. A ground track-based approach to design satellite constellations[J]. Aerospace Science and Technology,2017,69:458-464
[14] 宝音贺西,马鹏斌. 火星探测器自主导航方法综述[J]. 飞控与探测,2018,1(1):34-40
BAOYIN H X,MA P B. Overview of autonomous navigation method for Mars probe[J]. Flight Control & Detection,2018,1(1):34-40
[15] 王大轶,黄翔宇. 深空探测转移段光学成像测量自主导航及仿真验证技术[J]. 控制理论与应用,2014,31(12):1714-1722
WANG D Y,HUANG X Y. Autonomous optical navigation for deep space transfer phase and its simulation verification[J]. Control Theory & Applications,2014,31(12):1714-1722
[16] 崔文,张少愚,张树瑜,等. 火星探测接近段的光学自主导航研究[J]. 空间科学学报,2013,33(3):313-319
CUI W,ZHANG S Y,ZHANG S Y,et al. Research on optical autonomous navigation for approach phase of Mars exploration[J]. Chinese Journal of Space Science,2013,33(3):313-319
[17] 毛晓艳,王大轶,辛优美,等. 深空光学敏感器“拖尾图像”的处理方法研究[J]. 空间控制技术与应用,2010,36(2):1-5+19
MAO X Y,WANG D Y,XIN Y M,et al. Processing method of “trailed image” for deep space optical sensor[J]. Aerospace Control and Application,2010,36(2):1-5+19
[18] 吴伟仁,马辛,宁晓琳. 火星探测器转移轨道的自主导航方法[J]. 中国科学:信息科学,2012,42(8):936-948
WU W R,MA X,NING X L. Autonomous navigation method with high accuracy for cruise phase of Mars probe[J]. Science China Information Sciences,2012,42(8):936-948
[19] 房建成,宁晓琳,马辛,等. 深空探测器自主天文导航技术综述[J]. 飞控与探测,2018,1(1):1-15
FANG J C,NING X L,MA X,et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control & Detection,2018,1(1):1-15
[20] RAYMOND K R,MORTARI D. Interplanetary autonomous navigation using visible planets[J]. Journal of Guidance,Control,and Dynamics,2015,38(6):1151-1156
[21] NING X L,WANG F,FANG J C. Implicit UKF and its observability analysis of satellite stellar refraction navigation system[J]. Aerospace Science and Technology,2016,54:49-58
[22] WANG R,XIONG Z,LIU J,et al. A new tightly-coupled INS/CNS integrated navigation algorithm with weighted multi-stars observations[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2016,230(4):698-712
[23] RAYMAN M D,VARGHESE P,LEHMAN D H,et al. Results from the Deep Space 1 technology validation mission[J]. Acta Astronautica,2000,47(2-9):475-487.
[24] KLIONER S A. A practical relativistic model for microarcsecond astrometry in space[J]. The Astronomical Journal,2003,125(3):1580
[25] SHUSTER M D. Stellar aberration and parallax:a tutorial[J]. The Journal of the astronautical sciences,2003,51:477-494
[26] LI M Z ,SUN J, PENG Y,et al. Observability and performance analysis of spacecraft autonomous navigation using stellar aberration observation[C]//2021 5th International Conference on Vision,Image and Signal Processing (ICVISP). Kuala Lumpur:IEEE,2021.
[27] XIONG K,WEI C. Integrated celestial navigation for spacecraft using interferometer and earth sensor[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2020,234(16):2248-2262
[28] CHRISTIAN J A,LIGHTSEY E G. Review of options for autonomous cislunar navigation[J]. Journal of Spacecraft and Rockets,2009,46(5):1023-1036
[29] GIFT S J G. Light speed variation in stellar aberration[J]. Physics Essays,2009,22(2):83.
[30] CHRISTIAN J A. StarNAV:autonomous optical navigation of a spacecraft by the relativistic perturbation of starlight[J]. Sensors,2019,19(19):4064
PDF(1347 KB)

Accesses

Citations

Detail

Sections
Recommended

/