[1] 叶培建,于登云,孙泽洲,等. 中国月球探测器的成就与展望[J]. 深空探测学报(中英文),2016,3(4):323-333
YE P J,YU D Y,SUN Z Z,et al. Achievements and prospect of Chinese lunar probes[J]. Journal of Deep Space Exploration,2016,3(4):323-333
[2] NASA. NASA’s lunar exploration program overview[EB/OL]. (2020-11-1)[2022-10-22]. http://www.innovation4.cn/library/r49711.
[3] 熊明华,刘永喆,宋轶姝. 俄罗斯载人登月相关问题分析[J]. 国际太空,2016(8):47-55
[4] SACKSTEDER K,SANDERS G. In-situ resource utilization for lunar and Mars exploration[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA,2007.
[5] KENNEDY K,ALEXANDER L,LANDIS R,et al. NASA technology area 07 human exploration destination systems roadmap[C]//AIAA SPACE 2011 Conference & Exposition. Reston:AIAA,2011.
[6] SOWERS G F,DREYER C B. Ice mining in lunar permanently shadowed regions[J]. New Space,2019,7(4):235-244
[7] ZACNY K,CHU P,PAULSEN G,et al. Mobile in-situ water extractor(MISWE)for Mars,Moon,and asteroids in situ resource utilization[C]//AIAA Space 2012 Conference & Exposition. Pasadena,California:AIAA,2012
[8] 王超,张晓静,姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文),2020,7(3):241-247
WANG C,ZHANG X J,YAO W. Research prospects of lunar polar water ice resource in-situ utilization[J]. Journal of Deep Space Exploration,2020,7(3):241-247
[9] HE L H,WANG C,ZHANG G,et al. A novel auger-based system for extraterrestrial in-situ water resource extraction[J]. Icarus,2021,367:114552
[10] 何立臣,王超,姚伟. 含冰模拟月壤水资源提取实验研究[J]. 航天器环境工程,2020,37(5):511-518
HE L C,WANG C,YAO W. Experiment study of water resource extraction from frozen lunar regolith simulants[J]. Spacecraft Environment Engineering,2020,37(5):511-518
[11] FENG D Q,JIANG W J,ZHANG C,et al. A membrane reactor with microchannels for carbon dioxide reduction in extraterrestrial space[J]. Catalysts,2022,12:3
[12] YANG L Q,ZHANG C,YU X W,et al. Extraterrestrial artificial photosynthetic materials for in-situ resource utilization[J]. National Science Review,2021,8(8):1-26.
[13] 冯德强,张策,姜文君,等. 地外人工光合成装置研制与试验[J]. 中国空间科学技术,2020,40(6):13-22
FENG D Q,ZHANG C,JIANG W J,et al. Design and trail of extraterrestrial artificial photosynthesis device[J]. Chinese Space Science and Technology,2020,40(6):13-22
[14] YAO Y F,WANG L,ZHU X,et al. Extraterrestrial photosynthesis by Chang’E-5 lunar soil[J]. Joule,2022,6(5):1008-1014
[15] KELLER B,CLARK D,KIRKLAND J. Field test results of the PILOT hydrogen reduction reactor[C]//AIAA SPACE 2009 Conference & Exposition. Reston:AIAA,2009.
[16] WHITE B,GUSTAFSON R,FIDLER M. 2010 field demonstration of the solar carbothermal regolith reduction process to produce oxygen[C]//49th AIAA Aerospace Sciences Meeting. Orlando,FL:AIAA,2011.
[17] SANDERS G B,LARSON W E. Progress made in lunar in-situ resource utilization under NASA’s exploration technology and development program[R]. Reston,VA:American Society of Civil Engineers,2012.
[18] 李芃,王世杰,李雄耀,等. 利用月球含氧矿物制取氧气的方法学比较[J]. 矿物岩石地球化学通报,2009,28(2):183-188
LI P,WANG S J,LI X Y,et al. Review of oxygen production using oxygenous minerals on the Moon[J]. Bulletin of Mineralogy,2009,28(2):183-188
[19] 王志浩,刘宇明,田东波,等. 月壤原位利用工程技术发展浅析[J]. 航天器环境工程,2019,36(6):647-654
WANG Z H,LIU Y M,TIAN D B,et al. Preliminary analysis of technologies pertaining to the in-situ utilization of lunar soil[J]. Spacecraft Environment Engineering,2019,36(6):647-654
[20] National Aeronautics and Space Administration. NASA technology roadmaps TA 7:human exploration destination systems[R]. USA:NASA,2015.
[21] BALASUBRAMANIAM R,GOKOGLU S,SACKSTEDER K,et al. Analysis of solar-heated thermal wadis to support extended-duration lunar exploration[J]. Journal of Thermophysics and Heat Transfer,2011,25(1):130-139
[22] CLIMENT B,TORROBA O,GONZALEZ-CINCA R,et al. Heat storage and electricity generation in the Moon during the lunar night[J]. Acta Astronautica,2014,93:352-358
[23] HAGER P B,KLAUS D M,WALTER U. Characterizing transient thermal interactions between lunar regolith and surface spacecraft[J]. Planetary and Space Science 92,2014,92:101-116
[24] FLEITH P,COWLEY A,POU A C,et al. In-situ approach for thermal energy storage and thermoelectricity generation on the moon:modelling and simulation[J]. Planetary and Space Science,2019,181:104789
[25] MALOS F M,SERRA P,FERERES S,et al. Lunar ISRU energy storage and electricity generation[J]. Acta Astronautica,2020,170:412-420
[26] LU X,MA R,WANG C,et al. Performance analysis of a lunar based solar thermal power system with regolith thermal storage[J]. Energy,2016,107:227-233
[27] LU X,YAO W,WANG C,et al. Exergy analysis of a lunar based solar thermal power system with finite-time thermodynamics[J]. Energy Procedia,2019,158:792-796
[28] BEHROKH K,DOOIL H,KE-THIA Y,et al. Mega-scale fabrication by Contour Crafting[J]. International Journal of Industrial and Systems Engineering,2006,1(3):301-320
[29] CESARETTI G,DINI E,KESTELIER X D,et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica,2014,93:430-450
[30] MEURISSE A,MAKAYA A,WILLSCH C,et al. Solar 3D printing of lunar regolith[J]. Acta Astronautica,2018,152:800-810
[31] FATERI M,MEURISSE A,SPERL M,et al. Solar sintering for lunar additive manufacturing[J]. Journal of Aerospace Engineering,2019,32(6):1-10
[32] NAKAMURA B,SMITH K. Solar thermal system for lunar ISRU applications:development and field operation at Mauna Kea,HI[C]/49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando,Florida:AIAA,2011.
[33] ISACHENKOV M,CHUGUNOV S,AKHATOV I,et al. Regolith-based additive manufacturing for sustainable development of lunar infrastructure-an overview[J]. Acta Astronautica,2021,180:1-48
[34] ZHOU C,CHEN R,XU J,et al. In-situ construction method for lunar habitation:Chinese super mason[J]. Automation in Construction,2019,104:66-79
[35] 魏帅帅,宋波,陈华雄,等. 月球表面 3D 打印技术畅想[J]. 精密成形工程,2019,11(3):76-87
WEI S S,SONG B,CHEN H X,et al. Imagination on 3D Printing on the Moon Surface[J]. Journal of Netshape Forming Engineering,2019,11(3):76-87
[36] 王超,姚伟,李啸天,等. 一种利用静电输运和聚光熔融烧结的原位资源处理系统:中国:ZL201810183951.5[P]. 北京:中国空间技术研究院,2018.
[37] GU J,WANG Q,WU Y,et al. Numerical study of particle transport by an alternating travelling-wave electrostatic field[J]. Acta Astronautica,2021,188:505-517
[38] GU J,ZHANG G,WANG Q,et al. Experimental study on particles directed transport by an alternating travelling-wave electrostatic field[J]. Powder Technology,2022,397:117107
[39] 王超,张光,李啸天,等. 模拟月壤激光熔融成型工艺参数试验初探[J]. 航天器环境工程,2021,38(5):575-580
WANG C,ZHANG G,LI X C,et al. Experimental study of the parameters of laser melting molding process with regard to simulated lunar soil[J]. Spacecraft Environment Engineering,2021,38(5):575-580