Conceptual Design of Lunar Surface In-Situ Resource Supply Station

WANG Chao1, PENG Qibo2, WANG Shenquan2, WANG Qinggong1, YAO Wei1

Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (6) : 596-605. DOI: 10.15982/j.issn.2096-9287.2022.20220071
Topic:Construction of Lunar Research Station's
Topic:Construction of Lunar Research Station's

Conceptual Design of Lunar Surface In-Situ Resource Supply Station

  • WANG Chao1, PENG Qibo2, WANG Shenquan2, WANG Qinggong1, YAO Wei1
Author information +
History +

Abstract

According to the requirements of major engineering tasks such as manned lunar landing,lunar base construction and lunar scientific research,the in-situ resource utilization technology was used to build a lunar surface resource supply station with certain material and energy supply capacity and break through key technologies such as in-situ water ice photo-thermal extraction, in-situ oxygen production, in-situ energy storage and power generation,and in-situ construction of the lunar surface,so as to realize the construction of residential protective cabins necessary for astronauts' lunar presence and activities and in-situ acquisition and supply of water oxygen,fuel and other materials, as well as light,heat, electricity and other energies,which will promote the development of China's lunar scientific research and development activities,and gradually realize lunar surface settlement and scientific research ability free from dependence on Earth's supply dependence.

Keywords

manned lunar landing / lunar base / resource station / in-situ resources utilization

Cite this article

Download citation ▾
WANG Chao, PENG Qibo, WANG Shenquan, WANG Qinggong, YAO Wei. Conceptual Design of Lunar Surface In-Situ Resource Supply Station. Journal of Deep Space Exploration, 2022, 9(6): 596‒605 https://doi.org/10.15982/j.issn.2096-9287.2022.20220071

References

[1] 叶培建,于登云,孙泽洲,等. 中国月球探测器的成就与展望[J]. 深空探测学报(中英文),2016,3(4):323-333
YE P J,YU D Y,SUN Z Z,et al. Achievements and prospect of Chinese lunar probes[J]. Journal of Deep Space Exploration,2016,3(4):323-333
[2] NASA. NASA’s lunar exploration program overview[EB/OL]. (2020-11-1)[2022-10-22]. http://www.innovation4.cn/library/r49711.
[3] 熊明华,刘永喆,宋轶姝. 俄罗斯载人登月相关问题分析[J]. 国际太空,2016(8):47-55
[4] SACKSTEDER K,SANDERS G. In-situ resource utilization for lunar and Mars exploration[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA,2007.
[5] KENNEDY K,ALEXANDER L,LANDIS R,et al. NASA technology area 07 human exploration destination systems roadmap[C]//AIAA SPACE 2011 Conference & Exposition. Reston:AIAA,2011.
[6] SOWERS G F,DREYER C B. Ice mining in lunar permanently shadowed regions[J]. New Space,2019,7(4):235-244
[7] ZACNY K,CHU P,PAULSEN G,et al. Mobile in-situ water extractor(MISWE)for Mars,Moon,and asteroids in situ resource utilization[C]//AIAA Space 2012 Conference & Exposition. Pasadena,California:AIAA,2012
[8] 王超,张晓静,姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文),2020,7(3):241-247
WANG C,ZHANG X J,YAO W. Research prospects of lunar polar water ice resource in-situ utilization[J]. Journal of Deep Space Exploration,2020,7(3):241-247
[9] HE L H,WANG C,ZHANG G,et al. A novel auger-based system for extraterrestrial in-situ water resource extraction[J]. Icarus,2021,367:114552
[10] 何立臣,王超,姚伟. 含冰模拟月壤水资源提取实验研究[J]. 航天器环境工程,2020,37(5):511-518
HE L C,WANG C,YAO W. Experiment study of water resource extraction from frozen lunar regolith simulants[J]. Spacecraft Environment Engineering,2020,37(5):511-518
[11] FENG D Q,JIANG W J,ZHANG C,et al. A membrane reactor with microchannels for carbon dioxide reduction in extraterrestrial space[J]. Catalysts,2022,12:3
[12] YANG L Q,ZHANG C,YU X W,et al. Extraterrestrial artificial photosynthetic materials for in-situ resource utilization[J]. National Science Review,2021,8(8):1-26.
[13] 冯德强,张策,姜文君,等. 地外人工光合成装置研制与试验[J]. 中国空间科学技术,2020,40(6):13-22
FENG D Q,ZHANG C,JIANG W J,et al. Design and trail of extraterrestrial artificial photosynthesis device[J]. Chinese Space Science and Technology,2020,40(6):13-22
[14] YAO Y F,WANG L,ZHU X,et al. Extraterrestrial photosynthesis by Chang’E-5 lunar soil[J]. Joule,2022,6(5):1008-1014
[15] KELLER B,CLARK D,KIRKLAND J. Field test results of the PILOT hydrogen reduction reactor[C]//AIAA SPACE 2009 Conference & Exposition. Reston:AIAA,2009.
[16] WHITE B,GUSTAFSON R,FIDLER M. 2010 field demonstration of the solar carbothermal regolith reduction process to produce oxygen[C]//49th AIAA Aerospace Sciences Meeting. Orlando,FL:AIAA,2011.
[17] SANDERS G B,LARSON W E. Progress made in lunar in-situ resource utilization under NASA’s exploration technology and development program[R]. Reston,VA:American Society of Civil Engineers,2012.
[18] 李芃,王世杰,李雄耀,等. 利用月球含氧矿物制取氧气的方法学比较[J]. 矿物岩石地球化学通报,2009,28(2):183-188
LI P,WANG S J,LI X Y,et al. Review of oxygen production using oxygenous minerals on the Moon[J]. Bulletin of Mineralogy,2009,28(2):183-188
[19] 王志浩,刘宇明,田东波,等. 月壤原位利用工程技术发展浅析[J]. 航天器环境工程,2019,36(6):647-654
WANG Z H,LIU Y M,TIAN D B,et al. Preliminary analysis of technologies pertaining to the in-situ utilization of lunar soil[J]. Spacecraft Environment Engineering,2019,36(6):647-654
[20] National Aeronautics and Space Administration. NASA technology roadmaps TA 7:human exploration destination systems[R]. USA:NASA,2015.
[21] BALASUBRAMANIAM R,GOKOGLU S,SACKSTEDER K,et al. Analysis of solar-heated thermal wadis to support extended-duration lunar exploration[J]. Journal of Thermophysics and Heat Transfer,2011,25(1):130-139
[22] CLIMENT B,TORROBA O,GONZALEZ-CINCA R,et al. Heat storage and electricity generation in the Moon during the lunar night[J]. Acta Astronautica,2014,93:352-358
[23] HAGER P B,KLAUS D M,WALTER U. Characterizing transient thermal interactions between lunar regolith and surface spacecraft[J]. Planetary and Space Science 92,2014,92:101-116
[24] FLEITH P,COWLEY A,POU A C,et al. In-situ approach for thermal energy storage and thermoelectricity generation on the moon:modelling and simulation[J]. Planetary and Space Science,2019,181:104789
[25] MALOS F M,SERRA P,FERERES S,et al. Lunar ISRU energy storage and electricity generation[J]. Acta Astronautica,2020,170:412-420
[26] LU X,MA R,WANG C,et al. Performance analysis of a lunar based solar thermal power system with regolith thermal storage[J]. Energy,2016,107:227-233
[27] LU X,YAO W,WANG C,et al. Exergy analysis of a lunar based solar thermal power system with finite-time thermodynamics[J]. Energy Procedia,2019,158:792-796
[28] BEHROKH K,DOOIL H,KE-THIA Y,et al. Mega-scale fabrication by Contour Crafting[J]. International Journal of Industrial and Systems Engineering,2006,1(3):301-320
[29] CESARETTI G,DINI E,KESTELIER X D,et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica,2014,93:430-450
[30] MEURISSE A,MAKAYA A,WILLSCH C,et al. Solar 3D printing of lunar regolith[J]. Acta Astronautica,2018,152:800-810
[31] FATERI M,MEURISSE A,SPERL M,et al. Solar sintering for lunar additive manufacturing[J]. Journal of Aerospace Engineering,2019,32(6):1-10
[32] NAKAMURA B,SMITH K. Solar thermal system for lunar ISRU applications:development and field operation at Mauna Kea,HI[C]/49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando,Florida:AIAA,2011.
[33] ISACHENKOV M,CHUGUNOV S,AKHATOV I,et al. Regolith-based additive manufacturing for sustainable development of lunar infrastructure-an overview[J]. Acta Astronautica,2021,180:1-48
[34] ZHOU C,CHEN R,XU J,et al. In-situ construction method for lunar habitation:Chinese super mason[J]. Automation in Construction,2019,104:66-79
[35] 魏帅帅,宋波,陈华雄,等. 月球表面 3D 打印技术畅想[J]. 精密成形工程,2019,11(3):76-87
WEI S S,SONG B,CHEN H X,et al. Imagination on 3D Printing on the Moon Surface[J]. Journal of Netshape Forming Engineering,2019,11(3):76-87
[36] 王超,姚伟,李啸天,等. 一种利用静电输运和聚光熔融烧结的原位资源处理系统:中国:ZL201810183951.5[P]. 北京:中国空间技术研究院,2018.
[37] GU J,WANG Q,WU Y,et al. Numerical study of particle transport by an alternating travelling-wave electrostatic field[J]. Acta Astronautica,2021,188:505-517
[38] GU J,ZHANG G,WANG Q,et al. Experimental study on particles directed transport by an alternating travelling-wave electrostatic field[J]. Powder Technology,2022,397:117107
[39] 王超,张光,李啸天,等. 模拟月壤激光熔融成型工艺参数试验初探[J]. 航天器环境工程,2021,38(5):575-580
WANG C,ZHANG G,LI X C,et al. Experimental study of the parameters of laser melting molding process with regard to simulated lunar soil[J]. Spacecraft Environment Engineering,2021,38(5):575-580

Accesses

Citations

Detail

Sections
Recommended

/