[1] LOWMAN D J. Lunar bases:a post-apollo evaluation[R]. USA:NASA,1985.
[2] WOODCOCK G R,SHERWOOD B,BUDDINGTON R A,et al. Robotic lunar surface operations:engineering analysis for the design,emplacement,checkout and performance of robotic lunar surface systems:NAS2-12108[R]. Huntsville,Alabama,USA:NASA,1990.
[3] NASA. International partners advance cooperation with first signings of ArtemNASA/Boeing aerospace and electronics co.,is accords[EB/OL].(2020-10-13)[2022-11-15]. https://www.nasa.Gov/press-release/nasa-international-partners-advance-cooperation-with-first-signings-of artemis-accords.
[4] NASA. Artemis [EB/OL]. (2021-02-15)[2022-11-15]. https://www. nasa.gov/specials/artemis/.
[5] 冯华. 吴伟仁:探月工程四期还将实施3次任务[J]. 国防科技工业,2022(3):17
[6] 裴照宇,刘继忠,王倩,等. 月球探测进展与国际月球科研站[J]. 科学通报,2020,65(24):2577-2586
PEI Z Y,LIU J Z,WANG Q,et al. Overview of lunar exploration and international lunar research station[J]. Chinese Science Bulletin,2020,65(24):2577-2586
[7] 袁勇,赵晨,胡震宇. 月球基地建设方案设想[J]. 深空探测学报(中英文),2018,5(4):374-381
YUAN Y,ZHAO C,HU Z Y. Prospect of lunar base construction scheme[J]. Journal of Deep Space Exploration,2018,5(4):374-381
[8] REGEON P A,CHAPMAN R J,BAUGH R. Clementine:“the deep space program science experiment”[J]. Acta Astronautica,1995,35:307-321
[9] TANAKA S,SHIRAISHI H,KATO M,et al. The science objectives of the SELENE-II mission as the post SELENE mission[J]. Advances in Space Research,2008,42(2):394-401
[10] 张洪华,梁俊,黄翔宇,等. 嫦娥三号自主避障软着陆控制技术[J]. 中国科学:技术科学,2014(6):559-568
ZHANG H H,LIANG J,HUANG X Y,et al. Autonomous hazard avoidance control for Chang’E-3 soft landing[J]. Science Sinica Technologica,2014(6):559-568
[11] MEADOR J. Long-term orbit stability of the Apollo 11 “Eagle” lunar module ascent stage[J]. Planetary and Space Science,2021,205:105304
[12] STOOKE P J,MARCUS M. Identification of the Apollo 12 lunar module ascent stage impact site on the Moon[J]. Icarus,2019,331:98-102
[13] JAMES K. A successful failure:NASA’s crisis communications regarding Apollo 13[J]. Public Relations Review,2001,27(4):437-448
[14] GODWIN R. Apollo 14:the NASA mission reports[R]. USA:NASA,2002.
[15] GODWIN R. Apollo 15:the NASA mission reports vol 1:apogee books space series 18[R]. USA:NASA,2015.
[16] CENTER M S. Apollo 16:preliminary science report[R]. USA:NASA,1972.
[17] GODWIN R. Apollo 17:the NASA mission reports[R]. USA:NASA,2002.
[18] JOHNSON R. Planning and development of lunar bases[C]//3rd Manned Space Flight Meeting. Houston,TX,USA:AIAA,1966.
[19] WAGNER R V,ROBINSON M S. Distribution,formation mechanisms,and significance of lunar pits[J]. Icarus,2014,237:52-60
[20] ANAND M,CRAWFORD L A,BALAT-PICHELIN M,et al. A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization(ISRU)applications[J]. Planetary & Space Science,2012,74(1):42-48
[21] BENAROYA H,BERNOLD L. Engineering of lunar bases[J]. Acta Astronautica,2008,62(4/5):277-299
[22] MOTTAGHI S,BENAROYA H. Design of a lunar surface structure. i:design configuration and thermal analysis[J]. Journal of Aerospace Engineering,2014,28(1):04014052
[23] WILLIAMS J P,PAIGE D A,GREENHANGEN B T,et al. The global surface temperatures of the Moon as measured by the diviner lunar radiometer experiment[J]. Icarus,2017,283:300-325
[24] VRAKKING V. Design of a deployable structure for a lunar greenhouse module[C]//43rd International Conference on Environmental Systems. Vail,CO:AIAA,2013.
[25] CHANDRAN S,RAJESH S R,ABRAHAM A,et al. SEP events and wake region lunar dust charging with grain radii[J]. Advances in Space Research,2017,59(1):483-489
[26] CRISWELL D R. Lunar dust motion[C]//Lunar and Planetary Science Conference Proceedings. [S.l]:AIAA,1972.
[27] 张崇峰,韩亮亮. 面向载人月球探测任务的月面机器人系统初探[J]. 载人航天,2019,25(5):561-571
ZHANG C F,HAN L L. Preliminary study on lunar robot for manned lunar exploration[J]. Manned Spaceflight,2019,25(5):561-571
[28] 韩亮亮,陈萌,张崇峰,等. 月面服务机器人研究进展及发展设想[J]. 载人航天,2018,24(3):313-320
HAN L L,CHENG M,ZHANG C F,et al. Research progress and development conception of lunar service robot[J]. Manned Spaceflight,2018,24(3):313-320
[29] AHLSTROM T,CURTIS A,DIFTLER M,et al. Robonaut 2 on the international space station:status update and preparations for IVA mobility[C]//AIAA SPACE 2013 Conference and Exposition. San Diego,CA:AIAA,2013.
[30] Spacedaily. com. Russian SAR-401 space robot ready for the ISS[EB/OL]. (2015)[2022-11-15] . http://wwww. spacedaily.com/reports/Russian_SAR_401_Space_Robot_Ready_for_the_ISS_999.Html.
[31] Boston Dynamics. Spot-good things come in small packages[EB/OL]. (2019)[2022-11-15]. https://www. boston-dynamics.com/spot.
[32] 王文昌. 美国“深空”1号探测器发射升空[M]. 世界军事年鉴,北京:解放军出版社,1999:413.
[33] SEDWICK R J,潘料炎. 利用分布式卫星系统的轨道动力学和微推进技术实现的孔径全盛——TechSat21卫星的具体应用[J]. 控制工程,2001(1):54-60
[34] 杨帆,董正宏,吴忠望. 空间智能技术发展状况分析[J]. 国际太空,2021(4):55-59
[35] 于登云,张哲,泮斌峰,等. 深空探测人工智能技术研究与展望[J]. 深空探测学报(中英文),2020,7(1):11-23
YU D Y,ZHANG Z,PAN B F,et al. Development and trend of artificial intelligent in deep space exploration[J]. Journal of Deep Space Exploration,2020,7(1):11-23
[36] 周海东,廖学军,汪荣峰. 基于海量空间数据的实 时地形视景仿真算法研究[J]. 系统仿真学报,2005,17(11):2606-2609
ZHOU H D,LIAO X J,WANG R F. Research on algorithm for real-time visual simulation of terrain based on mass spatial data[J]. Journal of System Simulation,2005,17(11):2606-2609
[37] 中国电子信息产业发展研究院. 2018—2019年中国自动驾驶产业发展蓝皮书[M]. 北京:电子工业出版社,2020.
[38] 李程,夏丹,董世运,等. 复杂陆战场环境下的智能感知理论现状与发展[J]. 国防科技,2021,42(3):7
LI C,XIA D,DONG S Y,et al. Current situation and future development of intelligent perception theory in complex land battlefield environment[J]. National Defense Science & Technology,2021,42(3):7
[39] 吴磊. 基于多传感器融合新技术研究[J]. 科技传播,2013(7):2
[40] 周天毅. 基于模糊理论和神经网络的多传感器数据融合研究[D]. 南京:南京信息工程大学,2022.
[41] VOROBYEV G,VARDY A,BANZHAF W. Supervised learning in robotic swarms:From training samples to emergent behavior[C]//Symposium on Distributed Autonomous Robotic Systems. Berlin,Germany:Springer,2012.
[42] GROSS R,BONANI M,MONDADA F,et al. Autonomous self-assembly in swarm-bots[J]. IEEE Transactions on Robotics,2006,22(6):1115-1130
[43] MATHEWS N,CHRISTENSEN A L,STRANIERI A,et al. Supervised morphogenesis:exploiting morphological flflexibility of self-assembling multirobot systems through cooperation with aerial robots[J]. Robotics and Autonomous Systems,2019,112:154-167
[44] SLAVKOV I,CARRILLO-ZAPATA D,CARRANZA N,et al. Morphogenesis in robot swarms[J]. Science Robotics,2018,3(25):aau9178
[45] LEE G,NISHIMURA Y,TATARA K,et al. Three dimensional deployment of robot swarms[C]//IEEE /RSJ International Conference on Intelligent Robots and Systems. Piscataway,USA:IEEE,2010.
[46] MATHEWS E. Self-organizing ad-hoc mobile robotic networks[D]. Paderborn,Germany:Paderborn University,2012.
[47] FALCONI R,SABATTINI L,SECCHI C,et al. Edge-weighted consensus-based formation control strategy with collision avoidance[J]. Robotica,2015,33(2):332-347
[48] KUYUCU T,TANEV I,SHIMOHARA K. Evolutionary optimization of pheromone-based stigmergic communication[C]//Lecture Notes in Computer Science. Berlin,Germany:Springer,2012.
[49] RANJBAR-SAHRAEI B,WEISS G,NAKISAEE A. A multi-robot coverage approach based on stigmergic communication[C]//Lecture Notes in Computer Science. Berlin,Germany:Springer,2012.
[50] CHEN J,GAUCI M,GROSS R. A strategy for transporting tall objects with a swarm of miniature mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE,2013.
[51] GROSS R,DORIGO M. Towards group transport by swarms of robots[J]. International Journal of Bio-Inspired Computation,2009,1(1/2):1-13
[52] GARNIER S,GAUTRAIS J,ASADPOUR M,et al. Self-organized aggregation triggers collective decision making in a group of cockroach-like robots[J]. Adaptive Behavior,2009,17(2):109-133
[53] CAMPO A,GARNIER S,DEDRICHE O,et al. Self-organized dis- crimination of resources[J]. PLoS One,2011,6(5):1-7
[54] FRANCESCA G,BRAMBILLA M,TRIANNI V,et al. Analysing an evolved robotic behavior using a biological model of collegial decision making[C]//International Conference on Simulation of Adaptive Behavior. Berlin,Germany:Springer,2012.
[55] KRIEGER M J B,BILLETER J B. The call of duty:self-organised task allocation in a population of up to twelve mobile robots[J]. Robotics and Autonomous Systems,2000,30(1/2):65-84
[56] PINI G,BRUTSCHY A,FRISON M,et al. Task partitioning in swarms of robots:an adaptive method for strategy selection[J]. Swarm Intelligence,2011,5(3/4):283-304
[57] RAJA P,PUGAZHENTHI S. Optimal path planning of mobile robots:a review[J]. International Journal of the Physical Sciences,2012,7(9):1314-1320
[58] COHEN W. Adaptive mapping and navigation by teams of simple robots[J]. Robotics and Autonomous Systems,1996,18(4):411-434
[59] MULLINS J,MEYER B,HU A. Collective robot navigation using diffusion limited aggregation[C]//International Conference on Parallel Problem Solving from Nature. Berlin,Germany:Springer,2012.
[60] DUCATELLE F,CARO G A D,GAMBARDELLA L M. Robot navigation in a networked swarm[C]//Lecture Notes in Artifificial Intelligence. Berlin,Germany:Springer,2008.
[61] DUCATELLE F,FORSTER A,DI CARO G A,et al. Supporting navigation in multi-robot systems through delay tolerant network communication[J]. IFAC Proceedings Volumes,2009,42(22):25-30
[62] DUCATELLE F,DI CARO G A,PINCIROLI C,et al. Communication assisted navigation in robotic swarms:self-organization and cooperation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,USA:IEEE,2011.
[63] 王伟嘉,郑雅婷,林国政,等. 集群机器人研究综述[J]. 机器人,2020,42(2):232-256
WANG W J,ZHENG Y T,LIN G Z,et al. Swarm robotics:a review[J]. Robot,2020,42(2):232-256
[64] 王梓强,胡晓光,李晓筱,等. 移动机器人全局路径规划算法综述[J]. 计算机科学,2021,48(10):19-29
WANG Z Q,HU X G,LI X X,et al. Overview of global path planning algorithms for mobile robots[J]. Computer Science,2021,48(10):19-29
[65] 林韩熙,向丹,欧阳剑,等. 移动机器人路径规划算法的研究综述[J]. 计算机工程与应用,2021,57(18):38-48
LIN H X,XIANG D,OUYANG J,et al. Review of path planning algorithms for mobile robots[J]. Computer Engineering and Applications,2021,57(18):38-48
[66] 刘兆炜. 基于故障预测与健康管理的智能化运维系统的设计与实现[D]. 沈阳:中国科学院大学(中国科学院沈阳计算技术研究所),2018.
[67] 杨家荣. 故障预测与健康管理技术在智能运维中的应用[J]. 装备机械,2021,59(6):69-74
YANG J R. Application of PHM technology intelligent operation and maintenance[J]. The Magazine on Equipment Machinery,2021,59(6):69-74
[68] 龚小立,李钊,李强. 基于逻辑判断的智能故障专家系统的设计[J]. 电子测试,2021(16):92-94
GONG X L,LI Z,LI Q. Design of intelligent fault expert system based on logic judgment[J]. Electronic Test,2021(16):92-94
[69] 袁企乡,王海奇,向军,等. 集成智能化测试系统技术研究应用[J]. 计算机测量与控制,2016,24(4):48-50,54
YUAN Q X,WANG H Q,XIANG J,et al. Integrated intelligent test system technology research and application[J]. Computer Measurement and Control,2016,24(4):48-50,54
[70] CHALAPATHY R,CHAWLA S. Deep learning for anomaly detection:A survey[EB/OL]. (2019-1-23)[2022-11-15] . https://arxiv. org/abs/1901.03407https://arxiv.org/abs/1901.03407.
[71] 王亚坤,杨凯飞,张婕,等. 卫星在轨故障案例与人工智能故障诊断[J]. 中国空间科学技术,2022,42(1):16-29
WANG Y K,YANG K F,ZHANG J,et al. Case study of in-orbit satellite failures and artificial intelligence based failure detection[J]. Chinese Space Science and Technology,2022,42(1):16-29
[72] MAHMOUD T A,SHEHAB A F,ELSHAFEY M A. Different long short-term memory approaches to enhance prediction-based satellite telemetry compression[J]. Journal of Aerospace Information Systems,2021,18(2):50-57
[73] FOURATI F,ALOUINI M S. Artificial intelligence for satellite communication:a review survey[EB/OL]. (2019-1-25)[2022-11-15]. https://arxiv.org/abs/2101.10899.
[74] OMEARA C,SCHLAG L,WICKLER M. Applications of deep learning neural networks to satellite telemetry monitoring[C]//Proceedings of the SpaceOps Conference. Marseille,France:AIAA,2018.
[75] 任浩,屈剑锋,柴毅,等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策,2017,32(8):1345-1358
REN H,QU J F,CHAI Y,et al. Deep learning for fault diagnosis:the state of the art and challenge[J]. Control and Decision,2017,32(8):1345-1358
[76] 杨腾,宁芊,陈炳才. 基于小波变换和残差神经网络模型的轴承故障诊断[J]. 现代计算机,2021,723(15):82-88
YANG T,NING Q,CHEN B C. Bearing fault diagnosis based on wavelet transform and residual neural network model[J]. Modern Computer,2021,723(15):82-88
[77] VOLODYMYR M,KAVUKCUOGLU K,SILVER R,et al. Human-level control through deep reinforcement learning[J]. Nature,2015,518(7540):529-533
[78] 曹雷. 基于深度强化学习的智能博弈对抗关键技术[J]. 指挥信息系统与技术,2019,10(5):1-7
CAO L. Key technologies of intelligent game confrontation based on deep reinforcement learning[J]. Command Information System And Technology,2019,10(5):1-7
[79] 黄宁馨,尹翔,乐云亮,等. 一种基于元学习的改进深度强化学习算法[J]. 扬州大学学报:自然科学版,2021,24(3):19-23
HUANG N X,YIN X,LE Y L,et al. An improved deep reinforcement learning algorithm based on meta-learning[J]. Journal of Yangzhou University(Natural Science Edition),2021,24(3):19-23
[80] 范向民,范俊君,田丰,等. 人机交互与人工智能:从交替浮沉到协同共进[J]. 中国科学:信息科学,2019,49(3):361-368
FAN X M,FAN J C,TIAN F,et al. Human-computer interaction and artificial intelligence:from competition to integration[J]. Scientia Sinica Informationis,2019,49(3):361-368
[81] 喻贵银. 画月——从月球测图到数字月球[J]. 中国测绘,2006(5):26-29
[82] 孙鹏举,刘建忠,王俊涛,等. 数字月球云平台设计[J]. 矿物岩石地球化学通报,2022,41(1):135-142
SUN P J,LIU J Z,WANG J T,et al. Design of digital lunar cloud-based platform[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2022,41(1):135-142