Research on Artificial Intelligence Technology for Lunar Scientific Research Station

ZHANG Zhe1,2,3, QIN Tong4, SHI Yishuai1, QIAO Dong1, JIAN Kangkang2,3, CHEN Hui5, ZHANG Tianzhu2,6, XU Rui1, JIN Xiao2,3

Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (6) : 560-570. DOI: 10.15982/j.issn.2096-9287.2022.20220099
Topic:Construction of Lunar Research Station's
Topic:Construction of Lunar Research Station's

Research on Artificial Intelligence Technology for Lunar Scientific Research Station

  • ZHANG Zhe1,2,3, QIN Tong4, SHI Yishuai1, QIAO Dong1, JIAN Kangkang2,3, CHEN Hui5, ZHANG Tianzhu2,6, XU Rui1, JIN Xiao2,3
Author information +
History +

Abstract

The construction of a lunar scientific research station is an inevitable mean for carring out in-depth lunar scientific exploration and realizing the large-scale development and utilization of lunar resources. Restricted by the depth of human cognition of the Moon and the development level of existing space technology,the implementation of the task of building a lunar scientific research station still faces many technical difficulties. At present,with the in-depth research of artificial intelligence technology and the rapid development of its integrated application in various fields,new ideas have been brought to solve the above technical problems. In the paper the construction concept,system composition, mission characteristics and technical challenges faced by the lunar scientific research station were analyzed. On this basis,artificial intelligence technologies such as intelligent fusion perception, collaborative control,path planning,fault detection,decision planning and human-computer interaction etc. in these typical application scenarios were discussed,which will provide reference for the implementation of for the construction of lunar scientific research stations and manned Moon landing missions.

Keywords

lunar scientific research station / artificial intelligence / multi-probes cooperation / lunar in-situ resource utilization

Cite this article

Download citation ▾
ZHANG Zhe, QIN Tong, SHI Yishuai, QIAO Dong, JIAN Kangkang, CHEN Hui, ZHANG Tianzhu, XU Rui, JIN Xiao. Research on Artificial Intelligence Technology for Lunar Scientific Research Station. Journal of Deep Space Exploration, 2022, 9(6): 560‒570 https://doi.org/10.15982/j.issn.2096-9287.2022.20220099

References

[1] LOWMAN D J. Lunar bases:a post-apollo evaluation[R]. USA:NASA,1985.
[2] WOODCOCK G R,SHERWOOD B,BUDDINGTON R A,et al. Robotic lunar surface operations:engineering analysis for the design,emplacement,checkout and performance of robotic lunar surface systems:NAS2-12108[R]. Huntsville,Alabama,USA:NASA,1990.
[3] NASA. International partners advance cooperation with first signings of ArtemNASA/Boeing aerospace and electronics co.,is accords[EB/OL].(2020-10-13)[2022-11-15]. https://www.nasa.Gov/press-release/nasa-international-partners-advance-cooperation-with-first-signings-of artemis-accords.
[4] NASA. Artemis [EB/OL]. (2021-02-15)[2022-11-15]. https://www. nasa.gov/specials/artemis/.
[5] 冯华. 吴伟仁:探月工程四期还将实施3次任务[J]. 国防科技工业,2022(3):17
[6] 裴照宇,刘继忠,王倩,等. 月球探测进展与国际月球科研站[J]. 科学通报,2020,65(24):2577-2586
PEI Z Y,LIU J Z,WANG Q,et al. Overview of lunar exploration and international lunar research station[J]. Chinese Science Bulletin,2020,65(24):2577-2586
[7] 袁勇,赵晨,胡震宇. 月球基地建设方案设想[J]. 深空探测学报(中英文),2018,5(4):374-381
YUAN Y,ZHAO C,HU Z Y. Prospect of lunar base construction scheme[J]. Journal of Deep Space Exploration,2018,5(4):374-381
[8] REGEON P A,CHAPMAN R J,BAUGH R. Clementine:“the deep space program science experiment”[J]. Acta Astronautica,1995,35:307-321
[9] TANAKA S,SHIRAISHI H,KATO M,et al. The science objectives of the SELENE-II mission as the post SELENE mission[J]. Advances in Space Research,2008,42(2):394-401
[10] 张洪华,梁俊,黄翔宇,等. 嫦娥三号自主避障软着陆控制技术[J]. 中国科学:技术科学,2014(6):559-568
ZHANG H H,LIANG J,HUANG X Y,et al. Autonomous hazard avoidance control for Chang’E-3 soft landing[J]. Science Sinica Technologica,2014(6):559-568
[11] MEADOR J. Long-term orbit stability of the Apollo 11 “Eagle” lunar module ascent stage[J]. Planetary and Space Science,2021,205:105304
[12] STOOKE P J,MARCUS M. Identification of the Apollo 12 lunar module ascent stage impact site on the Moon[J]. Icarus,2019,331:98-102
[13] JAMES K. A successful failure:NASA’s crisis communications regarding Apollo 13[J]. Public Relations Review,2001,27(4):437-448
[14] GODWIN R. Apollo 14:the NASA mission reports[R]. USA:NASA,2002.
[15] GODWIN R. Apollo 15:the NASA mission reports vol 1:apogee books space series 18[R]. USA:NASA,2015.
[16] CENTER M S. Apollo 16:preliminary science report[R]. USA:NASA,1972.
[17] GODWIN R. Apollo 17:the NASA mission reports[R]. USA:NASA,2002.
[18] JOHNSON R. Planning and development of lunar bases[C]//3rd Manned Space Flight Meeting. Houston,TX,USA:AIAA,1966.
[19] WAGNER R V,ROBINSON M S. Distribution,formation mechanisms,and significance of lunar pits[J]. Icarus,2014,237:52-60
[20] ANAND M,CRAWFORD L A,BALAT-PICHELIN M,et al. A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization(ISRU)applications[J]. Planetary & Space Science,2012,74(1):42-48
[21] BENAROYA H,BERNOLD L. Engineering of lunar bases[J]. Acta Astronautica,2008,62(4/5):277-299
[22] MOTTAGHI S,BENAROYA H. Design of a lunar surface structure. i:design configuration and thermal analysis[J]. Journal of Aerospace Engineering,2014,28(1):04014052
[23] WILLIAMS J P,PAIGE D A,GREENHANGEN B T,et al. The global surface temperatures of the Moon as measured by the diviner lunar radiometer experiment[J]. Icarus,2017,283:300-325
[24] VRAKKING V. Design of a deployable structure for a lunar greenhouse module[C]//43rd International Conference on Environmental Systems. Vail,CO:AIAA,2013.
[25] CHANDRAN S,RAJESH S R,ABRAHAM A,et al. SEP events and wake region lunar dust charging with grain radii[J]. Advances in Space Research,2017,59(1):483-489
[26] CRISWELL D R. Lunar dust motion[C]//Lunar and Planetary Science Conference Proceedings. [S.l]:AIAA,1972.
[27] 张崇峰,韩亮亮. 面向载人月球探测任务的月面机器人系统初探[J]. 载人航天,2019,25(5):561-571
ZHANG C F,HAN L L. Preliminary study on lunar robot for manned lunar exploration[J]. Manned Spaceflight,2019,25(5):561-571
[28] 韩亮亮,陈萌,张崇峰,等. 月面服务机器人研究进展及发展设想[J]. 载人航天,2018,24(3):313-320
HAN L L,CHENG M,ZHANG C F,et al. Research progress and development conception of lunar service robot[J]. Manned Spaceflight,2018,24(3):313-320
[29] AHLSTROM T,CURTIS A,DIFTLER M,et al. Robonaut 2 on the international space station:status update and preparations for IVA mobility[C]//AIAA SPACE 2013 Conference and Exposition. San Diego,CA:AIAA,2013.
[30] Spacedaily. com. Russian SAR-401 space robot ready for the ISS[EB/OL]. (2015)[2022-11-15] . http://wwww. spacedaily.com/reports/Russian_SAR_401_Space_Robot_Ready_for_the_ISS_999.Html.
[31] Boston Dynamics. Spot-good things come in small packages[EB/OL]. (2019)[2022-11-15]. https://www. boston-dynamics.com/spot.
[32] 王文昌. 美国“深空”1号探测器发射升空[M]. 世界军事年鉴,北京:解放军出版社,1999:413.
[33] SEDWICK R J,潘料炎. 利用分布式卫星系统的轨道动力学和微推进技术实现的孔径全盛——TechSat21卫星的具体应用[J]. 控制工程,2001(1):54-60
[34] 杨帆,董正宏,吴忠望. 空间智能技术发展状况分析[J]. 国际太空,2021(4):55-59
[35] 于登云,张哲,泮斌峰,等. 深空探测人工智能技术研究与展望[J]. 深空探测学报(中英文),2020,7(1):11-23
YU D Y,ZHANG Z,PAN B F,et al. Development and trend of artificial intelligent in deep space exploration[J]. Journal of Deep Space Exploration,2020,7(1):11-23
[36] 周海东,廖学军,汪荣峰. 基于海量空间数据的实 时地形视景仿真算法研究[J]. 系统仿真学报,2005,17(11):2606-2609
ZHOU H D,LIAO X J,WANG R F. Research on algorithm for real-time visual simulation of terrain based on mass spatial data[J]. Journal of System Simulation,2005,17(11):2606-2609
[37] 中国电子信息产业发展研究院. 2018—2019年中国自动驾驶产业发展蓝皮书[M]. 北京:电子工业出版社,2020.
[38] 李程,夏丹,董世运,等. 复杂陆战场环境下的智能感知理论现状与发展[J]. 国防科技,2021,42(3):7
LI C,XIA D,DONG S Y,et al. Current situation and future development of intelligent perception theory in complex land battlefield environment[J]. National Defense Science & Technology,2021,42(3):7
[39] 吴磊. 基于多传感器融合新技术研究[J]. 科技传播,2013(7):2
[40] 周天毅. 基于模糊理论和神经网络的多传感器数据融合研究[D]. 南京:南京信息工程大学,2022.
[41] VOROBYEV G,VARDY A,BANZHAF W. Supervised learning in robotic swarms:From training samples to emergent behavior[C]//Symposium on Distributed Autonomous Robotic Systems. Berlin,Germany:Springer,2012.
[42] GROSS R,BONANI M,MONDADA F,et al. Autonomous self-assembly in swarm-bots[J]. IEEE Transactions on Robotics,2006,22(6):1115-1130
[43] MATHEWS N,CHRISTENSEN A L,STRANIERI A,et al. Supervised morphogenesis:exploiting morphological flflexibility of self-assembling multirobot systems through cooperation with aerial robots[J]. Robotics and Autonomous Systems,2019,112:154-167
[44] SLAVKOV I,CARRILLO-ZAPATA D,CARRANZA N,et al. Morphogenesis in robot swarms[J]. Science Robotics,2018,3(25):aau9178
[45] LEE G,NISHIMURA Y,TATARA K,et al. Three dimensional deployment of robot swarms[C]//IEEE /RSJ International Conference on Intelligent Robots and Systems. Piscataway,USA:IEEE,2010.
[46] MATHEWS E. Self-organizing ad-hoc mobile robotic networks[D]. Paderborn,Germany:Paderborn University,2012.
[47] FALCONI R,SABATTINI L,SECCHI C,et al. Edge-weighted consensus-based formation control strategy with collision avoidance[J]. Robotica,2015,33(2):332-347
[48] KUYUCU T,TANEV I,SHIMOHARA K. Evolutionary optimization of pheromone-based stigmergic communication[C]//Lecture Notes in Computer Science. Berlin,Germany:Springer,2012.
[49] RANJBAR-SAHRAEI B,WEISS G,NAKISAEE A. A multi-robot coverage approach based on stigmergic communication[C]//Lecture Notes in Computer Science. Berlin,Germany:Springer,2012.
[50] CHEN J,GAUCI M,GROSS R. A strategy for transporting tall objects with a swarm of miniature mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE,2013.
[51] GROSS R,DORIGO M. Towards group transport by swarms of robots[J]. International Journal of Bio-Inspired Computation,2009,1(1/2):1-13
[52] GARNIER S,GAUTRAIS J,ASADPOUR M,et al. Self-organized aggregation triggers collective decision making in a group of cockroach-like robots[J]. Adaptive Behavior,2009,17(2):109-133
[53] CAMPO A,GARNIER S,DEDRICHE O,et al. Self-organized dis- crimination of resources[J]. PLoS One,2011,6(5):1-7
[54] FRANCESCA G,BRAMBILLA M,TRIANNI V,et al. Analysing an evolved robotic behavior using a biological model of collegial decision making[C]//International Conference on Simulation of Adaptive Behavior. Berlin,Germany:Springer,2012.
[55] KRIEGER M J B,BILLETER J B. The call of duty:self-organised task allocation in a population of up to twelve mobile robots[J]. Robotics and Autonomous Systems,2000,30(1/2):65-84
[56] PINI G,BRUTSCHY A,FRISON M,et al. Task partitioning in swarms of robots:an adaptive method for strategy selection[J]. Swarm Intelligence,2011,5(3/4):283-304
[57] RAJA P,PUGAZHENTHI S. Optimal path planning of mobile robots:a review[J]. International Journal of the Physical Sciences,2012,7(9):1314-1320
[58] COHEN W. Adaptive mapping and navigation by teams of simple robots[J]. Robotics and Autonomous Systems,1996,18(4):411-434
[59] MULLINS J,MEYER B,HU A. Collective robot navigation using diffusion limited aggregation[C]//International Conference on Parallel Problem Solving from Nature. Berlin,Germany:Springer,2012.
[60] DUCATELLE F,CARO G A D,GAMBARDELLA L M. Robot navigation in a networked swarm[C]//Lecture Notes in Artifificial Intelligence. Berlin,Germany:Springer,2008.
[61] DUCATELLE F,FORSTER A,DI CARO G A,et al. Supporting navigation in multi-robot systems through delay tolerant network communication[J]. IFAC Proceedings Volumes,2009,42(22):25-30
[62] DUCATELLE F,DI CARO G A,PINCIROLI C,et al. Communication assisted navigation in robotic swarms:self-organization and cooperation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,USA:IEEE,2011.
[63] 王伟嘉,郑雅婷,林国政,等. 集群机器人研究综述[J]. 机器人,2020,42(2):232-256
WANG W J,ZHENG Y T,LIN G Z,et al. Swarm robotics:a review[J]. Robot,2020,42(2):232-256
[64] 王梓强,胡晓光,李晓筱,等. 移动机器人全局路径规划算法综述[J]. 计算机科学,2021,48(10):19-29
WANG Z Q,HU X G,LI X X,et al. Overview of global path planning algorithms for mobile robots[J]. Computer Science,2021,48(10):19-29
[65] 林韩熙,向丹,欧阳剑,等. 移动机器人路径规划算法的研究综述[J]. 计算机工程与应用,2021,57(18):38-48
LIN H X,XIANG D,OUYANG J,et al. Review of path planning algorithms for mobile robots[J]. Computer Engineering and Applications,2021,57(18):38-48
[66] 刘兆炜. 基于故障预测与健康管理的智能化运维系统的设计与实现[D]. 沈阳:中国科学院大学(中国科学院沈阳计算技术研究所),2018.
[67] 杨家荣. 故障预测与健康管理技术在智能运维中的应用[J]. 装备机械,2021,59(6):69-74
YANG J R. Application of PHM technology intelligent operation and maintenance[J]. The Magazine on Equipment Machinery,2021,59(6):69-74
[68] 龚小立,李钊,李强. 基于逻辑判断的智能故障专家系统的设计[J]. 电子测试,2021(16):92-94
GONG X L,LI Z,LI Q. Design of intelligent fault expert system based on logic judgment[J]. Electronic Test,2021(16):92-94
[69] 袁企乡,王海奇,向军,等. 集成智能化测试系统技术研究应用[J]. 计算机测量与控制,2016,24(4):48-50,54
YUAN Q X,WANG H Q,XIANG J,et al. Integrated intelligent test system technology research and application[J]. Computer Measurement and Control,2016,24(4):48-50,54
[70] CHALAPATHY R,CHAWLA S. Deep learning for anomaly detection:A survey[EB/OL]. (2019-1-23)[2022-11-15] . https://arxiv. org/abs/1901.03407https://arxiv.org/abs/1901.03407.
[71] 王亚坤,杨凯飞,张婕,等. 卫星在轨故障案例与人工智能故障诊断[J]. 中国空间科学技术,2022,42(1):16-29
WANG Y K,YANG K F,ZHANG J,et al. Case study of in-orbit satellite failures and artificial intelligence based failure detection[J]. Chinese Space Science and Technology,2022,42(1):16-29
[72] MAHMOUD T A,SHEHAB A F,ELSHAFEY M A. Different long short-term memory approaches to enhance prediction-based satellite telemetry compression[J]. Journal of Aerospace Information Systems,2021,18(2):50-57
[73] FOURATI F,ALOUINI M S. Artificial intelligence for satellite communication:a review survey[EB/OL]. (2019-1-25)[2022-11-15]. https://arxiv.org/abs/2101.10899.
[74] OMEARA C,SCHLAG L,WICKLER M. Applications of deep learning neural networks to satellite telemetry monitoring[C]//Proceedings of the SpaceOps Conference. Marseille,France:AIAA,2018.
[75] 任浩,屈剑锋,柴毅,等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策,2017,32(8):1345-1358
REN H,QU J F,CHAI Y,et al. Deep learning for fault diagnosis:the state of the art and challenge[J]. Control and Decision,2017,32(8):1345-1358
[76] 杨腾,宁芊,陈炳才. 基于小波变换和残差神经网络模型的轴承故障诊断[J]. 现代计算机,2021,723(15):82-88
YANG T,NING Q,CHEN B C. Bearing fault diagnosis based on wavelet transform and residual neural network model[J]. Modern Computer,2021,723(15):82-88
[77] VOLODYMYR M,KAVUKCUOGLU K,SILVER R,et al. Human-level control through deep reinforcement learning[J]. Nature,2015,518(7540):529-533
[78] 曹雷. 基于深度强化学习的智能博弈对抗关键技术[J]. 指挥信息系统与技术,2019,10(5):1-7
CAO L. Key technologies of intelligent game confrontation based on deep reinforcement learning[J]. Command Information System And Technology,2019,10(5):1-7
[79] 黄宁馨,尹翔,乐云亮,等. 一种基于元学习的改进深度强化学习算法[J]. 扬州大学学报:自然科学版,2021,24(3):19-23
HUANG N X,YIN X,LE Y L,et al. An improved deep reinforcement learning algorithm based on meta-learning[J]. Journal of Yangzhou University(Natural Science Edition),2021,24(3):19-23
[80] 范向民,范俊君,田丰,等. 人机交互与人工智能:从交替浮沉到协同共进[J]. 中国科学:信息科学,2019,49(3):361-368
FAN X M,FAN J C,TIAN F,et al. Human-computer interaction and artificial intelligence:from competition to integration[J]. Scientia Sinica Informationis,2019,49(3):361-368
[81] 喻贵银. 画月——从月球测图到数字月球[J]. 中国测绘,2006(5):26-29
[82] 孙鹏举,刘建忠,王俊涛,等. 数字月球云平台设计[J]. 矿物岩石地球化学通报,2022,41(1):135-142
SUN P J,LIU J Z,WANG J T,et al. Design of digital lunar cloud-based platform[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2022,41(1):135-142

Accesses

Citations

Detail

Sections
Recommended

/