[1] 徐青,邢帅,周杨,等. 深空行星形貌测绘的理论技术与方法[M],北京:科学出版社,2016.
[2] 徐青,耿迅,蓝朝桢,等. 火星地形测绘研究综述[J]. 深空探测学报(中英文),2014,1(1):28-35
XU Q,GENG X,LAN C Z,et al. Review of Mars topographic mapping[J]. Journal of Deep Space Exploration,2014,1(1):28-35
[3] KIRK R L,KRAUS E H,REDDING B,et al. High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images[J]. Journal of Geophysical Research,Planets,2003,108(E12):8088
[4] KIRK R L,KRAUS E H,ROSIEK R M,et al. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images:meter-scale slopes of candidate Phoenix landing sites[J]. Journal of Geophysical Research-Planets,2008,113:5578-5579
[5] 邸凯昌,刘斌,辛鑫,等. 月球轨道器影像摄影测量制图进展及应用[J]. 测绘学报,2019,48(12):1562-1574
DI K C,LIU B,XIN X,et al. Advances and applications of lunar photogrammetric mapping using orbital images[J]. Acta Geodaetica et Cartographica Sinica,2019,48(12):1562-1574
[6] WU B,LI F,HU H,et al. Topographic and geomorphological mapping and analysis of the Chang'E-4 landing site on the far side of the Moon[J]. Photogrammetric Engineering and Remote Sensing,2020,86(4):247-258
[7] FERGASON R L,HARE T M,MAYER D P,et al. Mars 2020 terrain relative navigation flight product generation:digital terrain model and orthorectified image mosaics[C]//51st Lunar and Planetary Science Conference. Woodlands,Texas: [s. n.], 2020.
[8] 邸凯昌,刘召芹,万文辉,等. 月球和火星遥感制图与探测车导航定位[M]. 北京:科学出版社,2015.
[9] 欧阳自远,李春来,邹永廖,等,绕月探测工程的初步科学成果[J]. 中国科学:地球科学,2010,40(3):261-280.
OUYANG Z Y,LI C L,ZOU Y L,et al. The primary science result from the Chang’E-1 probe[J]. SCIENCE CHINA Earth Sciences,2010,40(3):261-280.
[10] 王越,王彪,王汛,等. 火星探测任务着陆区选址和地质分析[J]. 深空探测学报(中英文),2020,7(4):371-383
WANG Y,WANG B,WANG X,et al. Analysis and selection of landing areas for Mars mission[J]. Journal of Deep Space Exploration,2020,7(4):371-383
[11] 李春来,刘建军,耿言,等. 中国首次火星探测任务科学目标与有效载荷配置[J]. 深空探测学报(中英文),2018,5(5):406-413
LI C L,LIU J J,GENG Y,et al. Scientific objectives and payload configuration of China's first Mars exploration mission[J]. Journal of Deep Space Exploration,2018,5(5):406-413
[12] 王任享. 月球卫星三线阵CCD影像EFP光束法空中三角测量[J]. 测绘科学,2008,33(4):5-7
WANG R X. EFP bundle triangulation using lunar imagery obtained from satellite three-line-array camera[J]. Science of Surveying and Mapping,2008,33(4):5-7
[13] 李春来. 嫦娥一号三线阵CCD数据摄影测量处理及全月球数字地形图[J]. 测绘学报,2013,42(6):853-860
LI C L. Photogrammetric processing and lunar global topographic map from the Chang’E-1 3 line-array CCD data[J]. Acta Geodaetica et Cartographica Sinica,2013,42(6):853-860
[14] 李春来,任鑫,刘建军,等. 嫦娥一号激光测距数据及全月球DEM模型[J]. 中国科学:地球科学,2010,40(3):281-293
LI C L,REN X,LIU J J,et al. Laser altimetry data of Chang’E-1 and the global lunar DEM model[J]. SCIENCE CHINA Earth Sciences,2010,40(3):281-293
[15] GENG X,XU Q,XING S,et al. A robust ground-to-image transformation algorithm and its applications in the geometric processing of linear pushbroom images[J]. Earth and Space Science,2019,6(10):1805-1830
[16] REN X,LIU J,LI C,et al. A global adjustment method for photogrammetric processing of Chang’E-2 stereo images[J]. IEEE Transactions on Geoscience And Remote Sensing,2019,57(9):6832-6843
[17] WU B,LIU W C. Calibration of boresight offset of LROC NAC imagery for precision lunar topographic mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2017,128:372-387
[18] 万卫星,魏勇,郭正堂,等. 从深空探测大国迈向行星科学强国[J]. 中国科学院院刊,2019,34(7):748-755
WAN W X,WEI Y,GUO Z T,et al. Toward a power of planetary science from a giant of deep Space exploration[J]. Bulletin of Chinese Academy of Sciences,2019,34(7):748-755
[19] REISS D,ZANETTI M,NEUKUM G. Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC)[J]. Icarus,2011,215(1):358-369
[20] DUNDAS C M,MCEWEN A S,CHOJNACKI M,et al. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water[J]. Nature Geoscience,2017,10(12):903
[21] BICKEL V T,LANARAS C,MANCONI A,et al. Automated detection of lunar rockfalls using a convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(6):3501-3511
[22] EDMUNDSON K L, ALEXANDROV O, ARCHINAL B A, et al. Photogrammetric processing of Apollo 15 metric camera oblique images[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. [S. l.]: ISPRS, 2016.
[23] United States Geological Survey. UVVIS global basemap mosaic[EB/OL].(2008)[2021-12-28]. https://pdsimage.wr.usgs.gov/data/clem1-l-u-5-dim-basemap-v1.0/.
[24] ARCHINAL B A,ROSIEK M R,KIRK R L,et al. The unified lunar control network 2005 open file report version 1.0[EB/OL]. (2020-12-12)[2022-01-20].https://pubs.usgs.gov/of/2006/1367/ULCN2005-OpenFile.pdf.
[25] SCHOLTEN F,OBERST J,MATZ K D,et al. GLD100:the near-global lunar 100m raster DTM from LROC WAC stereo image data[J]. Journal of Geophysical Research:Planets,2012,117(E12):E00H17
[26] SPEYERER E J,WAGNER R V,ROBINSON M S,et al. Pre-flight and on-orbit geometric calibration of the Lunar Reconnaissance Orbiter Camera[J]. Space Science Review,2016,200:357-392
[27] SMITH D E,ZUBER M,JACKSON G B,et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission[J]. Space Science Reviews,2010,150(1):209-241
[28] BARKER M K,MAZARICO E,NEUMANN G A,et al. A new lunar digital elevation model from the lunar orbiter laser altimeter and SELENE terrain camera[J]. Icarus,2016,273:346-355
[29] HARUYAMA J,OHTAKE M,MATSUNAGA T,et al. Data products of SELENE(KAGUYA) terrain camera for future lunar missions[C]//45th Lunar and Planetary Science Conference. Woodlands,Texas:[s. n. ]:2014.
[30] RADHADEVI P V,SOLANKI S S,NAGASUBRAMANIAN V,et al. An algorithm for geometric correction of full pass TMC imagery of Chandrayaan-1[J]. Planetary and Space Science,2013,79:45-51
[31] KRISHNA B G,AMITABH,SINGH S,et al. Digital elevation models of the lunar surface from Chandrayaan-1 terrain mapping imagery—initial results[C]//40th Lunar and Planetary Science Conference. Los Angeles,CA:2009.
[32] SIVAKUMAR V,KUMAR B,SRIVASTAVA S K,et al. DEM generation for lunar surface using Chandrayaan-1 TMC triplet data[J]. Journal of Indian Society of Remote Sensing,2012,40(4):551-564
[33] CHOWDHURY A R,SAXENA M,KUMAR A,et al. Orbiter high resolution camera onboard Chandrayaan-2 orbiter[J]. Current Science,2019,117(7):560-565
[34] 李春来,刘建军,任鑫,等. 基于嫦娥二号立体影像的全月高精度地形重建[J]. 武汉大学学报(信息科学版),2018,43(4):485-495
LI C L,LIU J J,REN X,et al. Lunar global high-precision terrain reconstruction based on Chang'e-2 stereo images[J]. Geomatics and Information Science of Wuhan University,2018,43(4):485-495
[35] DI K C,JIA M N,XIN X,et al. High-resolution large-area digital orthophoto map generation using LROC NAC images[J]. Photogramm. Eng. Remote Sens,2019,85:481-491
[36] LROC Team. North polar mosaic[EB/OL]. [2022-01-20].https://www.lroc.asu.edu/posts/gigapan/.
[37] WU B,LIU W C,GRUMPE A,et al. Construction of pixel-level resolution DEMs from monocular images by shape and albedo from shading constrained with low-resolution DEM[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,140:3-19
[38] LIU W C,WU B. An integrated photogrammetric and photoclinometric approach for illumination-invariant pixel-resolution 3D mapping of the lunar surface[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,159:153-168
[39] 彭嫚,万文辉,吴凯,等. 嫦娥三号导航相机测图能力分析与地形重建[J]. 遥感学报,2014,18(5):995-1002
PENG M,WAN W H,WU K,et al. Topographic mapping capability analysis of Chang’e-3 Navcam stereo images and three-dimensional terrain reconstruction for mission operations[J]. Journal of Remote Sensing,2014,18(5):995-1002
[40] WANG Y X,WAN W H,GOU S,et al. Vision-based decision support for rover path planning in the Chang’e-4 mission[J]. Remote Sensing 2020,12:624.
[41] 邸凯昌,刘召芹,刘斌,等. 多源数据的嫦娥四号着陆点定位[J]. 遥感学报,2019,23(1):177-184
DI K C,LIU Z Q,LIU B,et al. Chang’e-4 lander localization based on multi-source data[J]. Journal of Remote Sensing,2019,23(1):177-184
[42] 邸凯昌,刘斌,彭嫚,等. 利用多探测任务数据建立新一代月球全球控制网的方案与关键技术[J]. 武汉大学学报(信息科学版),2018,43(12):2099-2105
DI K C,LIU B,PENG M,et al. Scheme and key techniques for construction of new-generation lunar global control network using multi-mission data[J]. Geomatics and Information Science of Wuhan University,2018,43(12):2099-2105
[43] 邸凯昌,刘斌,刘召芹. 火星遥感制图技术回顾与展望[J]. 航天器工程,2018,27(1):10-24
DI K C,LIU B,LIU Z Q. Review and prospect of Mars mapping technique using remote sensing data[J]. Spacecraft Engineering,2018,27(1):10-24
[44] WU S S C,ELASSAL A A,JORDAN R,et al. Photogrammetric application of Viking orbital photography[J]. Planetary Space Science,1982,30(1):45-55
[45] ROSIEK M R,KIRK R L,ARCHINAL B A,et al. Utility of Viking orbiter images and products for Mars mapping[J]. Photogrammetric Engineering & Remote Sensing,2005,71(10):1187-1195
[46] NEUMANN G A,ROWLANDS D D,LEMOINE F G,et al. Crossover analysis of Mars orbiter laser altimeter data[J]. Journal of Geophysical Research:Planets,2001,106(E10):23753-23768
[47] SMITH D E,ZUBER M T,FREY H V,et al. Mars orbiter laser altimeter—experiment summary after the first year of global mapping of Mars[J]. Journal of Geophysical Research:Planets,2001,106(E10):23689-23722
[48] EDWARDS C S,NOWICKI K J,CHRISTENSEN P R,et al. Mosaicking of global planetary image datasets:1. techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data[J]. Journal of Geophysical Research:Planets,2011,116(E10):E10008
[49] MCEWEN A S,BANKS M E,BAUGH N,et al. The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP)[J]. Icarus,2010,37(2):1-36
[50] PUTRI A R D,SIDIROPOULOS P,MULLER J P,et al. A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express[J]. Planetary Space Sci.,2019,174:43-55
[51] DICKSON J L,KERBER L A,FASSETT C I,et al. A global,blended CTX mosaic of Mars with vectorized seam mapping:a new mosaicking pipeline using principles of non-destructive image editing[C]//In Proceedings of the 49th Lunar and Planetary Science Conference. Woodlands,TX,USA:[s. n. ]:2018.
[52] LI R X,HWANGBO J,CHEN Y H,et al. Rigorous photogrammetric processing of HiRISE stereo imagery for Mars topographic mapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(7):2558-2572
[53] GOLOMBEK M,WARNER N H,GRANT J A,et al. Geology of the InSight landing site on Mars[J]. Nature Communication,2020,11(1):1014
[54] GRANT J A,GOLOMBEK M P,WILSON S A,et al. The science process for selecting the landing site for the 2020 Mars rover[J]. Planetary and Space Science,2018,164:106-126
[55] GOLOMBEK M P,GRANT J,PARKER T J,et al. Selection of the Mars exploration rover landing sites[J]. Journal of Geophysical Research:Planets,2003,108(E12):8072
[56] HARE T M, CUSHING G, SHINAMEN J, et al. Context Camera (CTX) image mosaics for Mars human exploration zones[EB/OL]. (2016)[2021-12-28]. http://bit.ly/CTX_EZs.
[57] GWINNER K,SCHOLTEN F,SPIEGEL M,et al. Derivation and validation of high-resolution digital terrain models from Mars Express HRSC data[J]. Photogrammetric Engineering and Remote Sensing,2009,75(9):1127-1142
[58] GWINNER K,JAUMANN R,HAUBER E,et al. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites[J]. Planetary and Space Science,2016,126:93-138
[59] GWINNER K,JAUMANN R,BOSTELMANN J,et al. The first quadrangle of the Mars Express HRSC multi orbit data products (MC-11-E)[C]//European Planetary Science Congress (EPSC). Nantes,France:[s. n. ],2015,
[60] FERGASON R L, HARE T M, LAURA J. HRSC and MOLA blended digital elevation model at 200 m v2. [EB/OL].(2018)[2021-12-28]. http://bit.ly/HRSC_MOLA_Blend_v0.
[61] SIMIONI E,RE C,MUDRIC T,et al. A photogrammetric pipeline for the 3d reconstruction of Cassis Images on board ExoMars TGO[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2017,XLII-3/W1:133-139
[62] ARYA A S,RAJASEKHAR R P,SINGH R B,et al. Mars color camera onboard Mars orbiter mission:initial observations and results[C]//46th Lunar and Planetary Science Conference. Woodlands,Texas:[s. n. ],2015.
[63] MISRA I,MOORTHI S M,DHAR D. Techniques developed for large area Mars image mosaic using ISRO's Mars Color Camera (MCC) data[J]. Journal of Geomatics,2019,13(1):106-110.
[64] 关昭,乔卫东,杨建峰,等. 火星多光谱相机的地面几何标定研究[J]. 深空探测学报(中英文),2018,5(5):465-471
GUAN Z,QIAO W D,YANG J F,et al. Ground geometric calibration of Mars multispectral camera[J]. Journal of Deep Space Exploration,2018,5(5):465-471
[65] WAN W H,YU T Y,DI K C,et al. Visual localization of the Tianwen-1lander using orbital,descent and rover images[J]. Remote Sensing,2021,13:3439
[66] GENG X,XU Q,WANG J Y,et al. Generation of large-scale orthophoto mosaics using MEX HRSC images for the candidate landing regions of China’s first Mars mission[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,60:5613520.
[67] 耿迅,徐青,邢帅,等. 火星快车HRSC线阵影像投影轨迹法近似核线重采样[J]. 武汉大学学报(信息科学版),2015,40(1):40-45
GENG X,XU Q,XING S,et al. Approximate epipolar resampling of Mars Express HRSC linear pushbroom imagery based on projection trajectory method[J]. Geomatics and Information Science of Wuhan University,2015,40(1):40-45
[68] GENG X,XU Q,XING S,et al. A novel pixel-level image matching method for Mars Express HRSC linear pushbroom imagery using approximate orthophotos[J]. Remote Sensing,2017,9(12):1262
[69] GENG X,XU Q,LAN C Z,et al. Orthorectification of planetary linear pushbroom images based on an improved back-projection algorithm[J]. IEEE Geoscience and Remote Sensing Letters,2019,16(6):854-858
[70] GENG X,XU Q,XING S,et al. A generic pushbroom sensor model for planetary photogrammetry[J]. Earth and Space Science,2020,7(5):e2019EA001014
[71] 李春来,刘建军,严韦,等. 小行星探测科学目标进展与展望[J]. 深空探测学报(中英文),2019,6(5):424-436
LI C L,LIU J J,YAN W,et al. Overview of scientific objectives for minor planets exploration[J]. Journal of Deep Space Exploration,2019,6(5):424-436
[72] BARNOUIN O S,DALY M G,PALMER E E,et al. Digital terrain mapping by the OSIRIS-REx mission[J]. Planetary and Space Science,2020,180:104764
[73] SCHOLTEN F,PREUSKER F,ELGNER S,et al. The Hayabusa2 lander MASCOT on the surface of asteroid (162173) Ryugu-Stereo-photogrammetric analysis of MASCam image data[J]. Astronomy & Astrophysics,2019,632:L5
[74] BUSSEY D B J,ROBINSON M S,EDWARDS K. 433 Eros global basemap from NEAR Shoemaker MSI images[J]. Icarus,2002,155:38-50
[75] GASKELL R W,BARNOUIN O S,SCHEERES D J,et al. Characterizing and navigating small bodies with imaging data[J]. Meteoritics & Planetary Science,2008,43(6):1049-1061
[76] PREUSKER F,SCHOLTEN F,MATZ K D,et al. Shape model,reference system definition,and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko. Stereo-photogrammetric analysis of Rosetta/OSIRIS image data[J]. Astronomy & Astrophysics,2015,583:A33
[77] ROATSCH T,KERSTEN E,MATZ K D,et al. High resolution Vesta High Altitude Mapping Orbit (HAMO) Atlas derived from Dawn framing camera images[J]. Planetary and Space Science,2012,73(1):283-286
[78] ROATSCH T,KERSTEN E,MATZ K D,et al. High-resolution Vesta low altitude mapping orbit atlas derived from Dawn framing camera images[J]. Planetary and Space Sciences,2013,85:293-298
[79] ROATSCH T,KERSTEN E,MATZ K D,et al. High-resolution Ceres high altitude mapping orbit atlas derived from Dawn framing camera images[J]. Planetary and Space Science,2016,129:103-107
[80] ROATSCH T,KERSTEN E,MATZ K D,et al. High-resolution Ceres low altitude mapping orbit atlas derived from dawn Framing Camera images[J]. Planetary and Space Science,2017,140:74-79