Recent Advances and Prospects in Extraterrestrial Planets Mapping

XU Qing1, GENG Xun2,3

PDF(819 KB)
PDF(819 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (3) : 300-310. DOI: 10.15982/j.issn.2096-9287.2022.20210162
Topic:Mapping technique of extraterrestrial planets

Recent Advances and Prospects in Extraterrestrial Planets Mapping

  • XU Qing1, GENG Xun2,3
Author information +
History +

Abstract

The topographic mapping of extraterrestrial planets provide basic geospatial data for engineering missions and various planetary scientific research, which can be used to select landing sites, plan path of rovers and conduct planetary geological and geomorphological analysis. We summarize the representative topographic mapping techniques and products in the exploration missions of moon, Mars and asteroids. This paper focuses on the research status of the techniques of generating digital orthophoto map and digital elevation model using mapping camera and LiDAR. We also give some suggestions on standard setting, data sharing, key technical bottlenecks and data processing technology system of extraterrestrial planets mapping.

Keywords

deep space exploration / extraterrestrial planets mapping / planetary photogrammetry / digital orthophoto map / digital elevation model

Cite this article

Download citation ▾
XU Qing, GENG Xun. Recent Advances and Prospects in Extraterrestrial Planets Mapping. Journal of Deep Space Exploration, 2022, 9(3): 300‒310 https://doi.org/10.15982/j.issn.2096-9287.2022.20210162

References

[1] 徐青,邢帅,周杨,等. 深空行星形貌测绘的理论技术与方法[M],北京:科学出版社,2016.
[2] 徐青,耿迅,蓝朝桢,等. 火星地形测绘研究综述[J]. 深空探测学报(中英文),2014,1(1):28-35
XU Q,GENG X,LAN C Z,et al. Review of Mars topographic mapping[J]. Journal of Deep Space Exploration,2014,1(1):28-35
[3] KIRK R L,KRAUS E H,REDDING B,et al. High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images[J]. Journal of Geophysical Research,Planets,2003,108(E12):8088
[4] KIRK R L,KRAUS E H,ROSIEK R M,et al. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images:meter-scale slopes of candidate Phoenix landing sites[J]. Journal of Geophysical Research-Planets,2008,113:5578-5579
[5] 邸凯昌,刘斌,辛鑫,等. 月球轨道器影像摄影测量制图进展及应用[J]. 测绘学报,2019,48(12):1562-1574
DI K C,LIU B,XIN X,et al. Advances and applications of lunar photogrammetric mapping using orbital images[J]. Acta Geodaetica et Cartographica Sinica,2019,48(12):1562-1574
[6] WU B,LI F,HU H,et al. Topographic and geomorphological mapping and analysis of the Chang'E-4 landing site on the far side of the Moon[J]. Photogrammetric Engineering and Remote Sensing,2020,86(4):247-258
[7] FERGASON R L,HARE T M,MAYER D P,et al. Mars 2020 terrain relative navigation flight product generation:digital terrain model and orthorectified image mosaics[C]//51st Lunar and Planetary Science Conference. Woodlands,Texas: [s. n.], 2020.
[8] 邸凯昌,刘召芹,万文辉,等. 月球和火星遥感制图与探测车导航定位[M]. 北京:科学出版社,2015.
[9] 欧阳自远,李春来,邹永廖,等,绕月探测工程的初步科学成果[J]. 中国科学:地球科学,2010,40(3):261-280.
OUYANG Z Y,LI C L,ZOU Y L,et al. The primary science result from the Chang’E-1 probe[J]. SCIENCE CHINA Earth Sciences,2010,40(3):261-280.
[10] 王越,王彪,王汛,等. 火星探测任务着陆区选址和地质分析[J]. 深空探测学报(中英文),2020,7(4):371-383
WANG Y,WANG B,WANG X,et al. Analysis and selection of landing areas for Mars mission[J]. Journal of Deep Space Exploration,2020,7(4):371-383
[11] 李春来,刘建军,耿言,等. 中国首次火星探测任务科学目标与有效载荷配置[J]. 深空探测学报(中英文),2018,5(5):406-413
LI C L,LIU J J,GENG Y,et al. Scientific objectives and payload configuration of China's first Mars exploration mission[J]. Journal of Deep Space Exploration,2018,5(5):406-413
[12] 王任享. 月球卫星三线阵CCD影像EFP光束法空中三角测量[J]. 测绘科学,2008,33(4):5-7
WANG R X. EFP bundle triangulation using lunar imagery obtained from satellite three-line-array camera[J]. Science of Surveying and Mapping,2008,33(4):5-7
[13] 李春来. 嫦娥一号三线阵CCD数据摄影测量处理及全月球数字地形图[J]. 测绘学报,2013,42(6):853-860
LI C L. Photogrammetric processing and lunar global topographic map from the Chang’E-1 3 line-array CCD data[J]. Acta Geodaetica et Cartographica Sinica,2013,42(6):853-860
[14] 李春来,任鑫,刘建军,等. 嫦娥一号激光测距数据及全月球DEM模型[J]. 中国科学:地球科学,2010,40(3):281-293
LI C L,REN X,LIU J J,et al. Laser altimetry data of Chang’E-1 and the global lunar DEM model[J]. SCIENCE CHINA Earth Sciences,2010,40(3):281-293
[15] GENG X,XU Q,XING S,et al. A robust ground-to-image transformation algorithm and its applications in the geometric processing of linear pushbroom images[J]. Earth and Space Science,2019,6(10):1805-1830
[16] REN X,LIU J,LI C,et al. A global adjustment method for photogrammetric processing of Chang’E-2 stereo images[J]. IEEE Transactions on Geoscience And Remote Sensing,2019,57(9):6832-6843
[17] WU B,LIU W C. Calibration of boresight offset of LROC NAC imagery for precision lunar topographic mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2017,128:372-387
[18] 万卫星,魏勇,郭正堂,等. 从深空探测大国迈向行星科学强国[J]. 中国科学院院刊,2019,34(7):748-755
WAN W X,WEI Y,GUO Z T,et al. Toward a power of planetary science from a giant of deep Space exploration[J]. Bulletin of Chinese Academy of Sciences,2019,34(7):748-755
[19] REISS D,ZANETTI M,NEUKUM G. Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC)[J]. Icarus,2011,215(1):358-369
[20] DUNDAS C M,MCEWEN A S,CHOJNACKI M,et al. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water[J]. Nature Geoscience,2017,10(12):903
[21] BICKEL V T,LANARAS C,MANCONI A,et al. Automated detection of lunar rockfalls using a convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(6):3501-3511
[22] EDMUNDSON K L, ALEXANDROV O, ARCHINAL B A, et al. Photogrammetric processing of Apollo 15 metric camera oblique images[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. [S. l.]: ISPRS, 2016.
[23] United States Geological Survey. UVVIS global basemap mosaic[EB/OL].(2008)[2021-12-28]. https://pdsimage.wr.usgs.gov/data/clem1-l-u-5-dim-basemap-v1.0/.
[24] ARCHINAL B A,ROSIEK M R,KIRK R L,et al. The unified lunar control network 2005 open file report version 1.0[EB/OL]. (2020-12-12)[2022-01-20].https://pubs.usgs.gov/of/2006/1367/ULCN2005-OpenFile.pdf.
[25] SCHOLTEN F,OBERST J,MATZ K D,et al. GLD100:the near-global lunar 100m raster DTM from LROC WAC stereo image data[J]. Journal of Geophysical Research:Planets,2012,117(E12):E00H17
[26] SPEYERER E J,WAGNER R V,ROBINSON M S,et al. Pre-flight and on-orbit geometric calibration of the Lunar Reconnaissance Orbiter Camera[J]. Space Science Review,2016,200:357-392
[27] SMITH D E,ZUBER M,JACKSON G B,et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission[J]. Space Science Reviews,2010,150(1):209-241
[28] BARKER M K,MAZARICO E,NEUMANN G A,et al. A new lunar digital elevation model from the lunar orbiter laser altimeter and SELENE terrain camera[J]. Icarus,2016,273:346-355
[29] HARUYAMA J,OHTAKE M,MATSUNAGA T,et al. Data products of SELENE(KAGUYA) terrain camera for future lunar missions[C]//45th Lunar and Planetary Science Conference. Woodlands,Texas:[s. n. ]:2014.
[30] RADHADEVI P V,SOLANKI S S,NAGASUBRAMANIAN V,et al. An algorithm for geometric correction of full pass TMC imagery of Chandrayaan-1[J]. Planetary and Space Science,2013,79:45-51
[31] KRISHNA B G,AMITABH,SINGH S,et al. Digital elevation models of the lunar surface from Chandrayaan-1 terrain mapping imagery—initial results[C]//40th Lunar and Planetary Science Conference. Los Angeles,CA:2009.
[32] SIVAKUMAR V,KUMAR B,SRIVASTAVA S K,et al. DEM generation for lunar surface using Chandrayaan-1 TMC triplet data[J]. Journal of Indian Society of Remote Sensing,2012,40(4):551-564
[33] CHOWDHURY A R,SAXENA M,KUMAR A,et al. Orbiter high resolution camera onboard Chandrayaan-2 orbiter[J]. Current Science,2019,117(7):560-565
[34] 李春来,刘建军,任鑫,等. 基于嫦娥二号立体影像的全月高精度地形重建[J]. 武汉大学学报(信息科学版),2018,43(4):485-495
LI C L,LIU J J,REN X,et al. Lunar global high-precision terrain reconstruction based on Chang'e-2 stereo images[J]. Geomatics and Information Science of Wuhan University,2018,43(4):485-495
[35] DI K C,JIA M N,XIN X,et al. High-resolution large-area digital orthophoto map generation using LROC NAC images[J]. Photogramm. Eng. Remote Sens,2019,85:481-491
[36] LROC Team. North polar mosaic[EB/OL]. [2022-01-20].https://www.lroc.asu.edu/posts/gigapan/.
[37] WU B,LIU W C,GRUMPE A,et al. Construction of pixel-level resolution DEMs from monocular images by shape and albedo from shading constrained with low-resolution DEM[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,140:3-19
[38] LIU W C,WU B. An integrated photogrammetric and photoclinometric approach for illumination-invariant pixel-resolution 3D mapping of the lunar surface[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,159:153-168
[39] 彭嫚,万文辉,吴凯,等. 嫦娥三号导航相机测图能力分析与地形重建[J]. 遥感学报,2014,18(5):995-1002
PENG M,WAN W H,WU K,et al. Topographic mapping capability analysis of Chang’e-3 Navcam stereo images and three-dimensional terrain reconstruction for mission operations[J]. Journal of Remote Sensing,2014,18(5):995-1002
[40] WANG Y X,WAN W H,GOU S,et al. Vision-based decision support for rover path planning in the Chang’e-4 mission[J]. Remote Sensing 2020,12:624.
[41] 邸凯昌,刘召芹,刘斌,等. 多源数据的嫦娥四号着陆点定位[J]. 遥感学报,2019,23(1):177-184
DI K C,LIU Z Q,LIU B,et al. Chang’e-4 lander localization based on multi-source data[J]. Journal of Remote Sensing,2019,23(1):177-184
[42] 邸凯昌,刘斌,彭嫚,等. 利用多探测任务数据建立新一代月球全球控制网的方案与关键技术[J]. 武汉大学学报(信息科学版),2018,43(12):2099-2105
DI K C,LIU B,PENG M,et al. Scheme and key techniques for construction of new-generation lunar global control network using multi-mission data[J]. Geomatics and Information Science of Wuhan University,2018,43(12):2099-2105
[43] 邸凯昌,刘斌,刘召芹. 火星遥感制图技术回顾与展望[J]. 航天器工程,2018,27(1):10-24
DI K C,LIU B,LIU Z Q. Review and prospect of Mars mapping technique using remote sensing data[J]. Spacecraft Engineering,2018,27(1):10-24
[44] WU S S C,ELASSAL A A,JORDAN R,et al. Photogrammetric application of Viking orbital photography[J]. Planetary Space Science,1982,30(1):45-55
[45] ROSIEK M R,KIRK R L,ARCHINAL B A,et al. Utility of Viking orbiter images and products for Mars mapping[J]. Photogrammetric Engineering & Remote Sensing,2005,71(10):1187-1195
[46] NEUMANN G A,ROWLANDS D D,LEMOINE F G,et al. Crossover analysis of Mars orbiter laser altimeter data[J]. Journal of Geophysical Research:Planets,2001,106(E10):23753-23768
[47] SMITH D E,ZUBER M T,FREY H V,et al. Mars orbiter laser altimeter—experiment summary after the first year of global mapping of Mars[J]. Journal of Geophysical Research:Planets,2001,106(E10):23689-23722
[48] EDWARDS C S,NOWICKI K J,CHRISTENSEN P R,et al. Mosaicking of global planetary image datasets:1. techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data[J]. Journal of Geophysical Research:Planets,2011,116(E10):E10008
[49] MCEWEN A S,BANKS M E,BAUGH N,et al. The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP)[J]. Icarus,2010,37(2):1-36
[50] PUTRI A R D,SIDIROPOULOS P,MULLER J P,et al. A new south polar digital terrain model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express[J]. Planetary Space Sci.,2019,174:43-55
[51] DICKSON J L,KERBER L A,FASSETT C I,et al. A global,blended CTX mosaic of Mars with vectorized seam mapping:a new mosaicking pipeline using principles of non-destructive image editing[C]//In Proceedings of the 49th Lunar and Planetary Science Conference. Woodlands,TX,USA:[s. n. ]:2018.
[52] LI R X,HWANGBO J,CHEN Y H,et al. Rigorous photogrammetric processing of HiRISE stereo imagery for Mars topographic mapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(7):2558-2572
[53] GOLOMBEK M,WARNER N H,GRANT J A,et al. Geology of the InSight landing site on Mars[J]. Nature Communication,2020,11(1):1014
[54] GRANT J A,GOLOMBEK M P,WILSON S A,et al. The science process for selecting the landing site for the 2020 Mars rover[J]. Planetary and Space Science,2018,164:106-126
[55] GOLOMBEK M P,GRANT J,PARKER T J,et al. Selection of the Mars exploration rover landing sites[J]. Journal of Geophysical Research:Planets,2003,108(E12):8072
[56] HARE T M, CUSHING G, SHINAMEN J, et al. Context Camera (CTX) image mosaics for Mars human exploration zones[EB/OL]. (2016)[2021-12-28]. http://bit.ly/CTX_EZs.
[57] GWINNER K,SCHOLTEN F,SPIEGEL M,et al. Derivation and validation of high-resolution digital terrain models from Mars Express HRSC data[J]. Photogrammetric Engineering and Remote Sensing,2009,75(9):1127-1142
[58] GWINNER K,JAUMANN R,HAUBER E,et al. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites[J]. Planetary and Space Science,2016,126:93-138
[59] GWINNER K,JAUMANN R,BOSTELMANN J,et al. The first quadrangle of the Mars Express HRSC multi orbit data products (MC-11-E)[C]//European Planetary Science Congress (EPSC). Nantes,France:[s. n. ],2015,
[60] FERGASON R L, HARE T M, LAURA J. HRSC and MOLA blended digital elevation model at 200 m v2. [EB/OL].(2018)[2021-12-28]. http://bit.ly/HRSC_MOLA_Blend_v0.
[61] SIMIONI E,RE C,MUDRIC T,et al. A photogrammetric pipeline for the 3d reconstruction of Cassis Images on board ExoMars TGO[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2017,XLII-3/W1:133-139
[62] ARYA A S,RAJASEKHAR R P,SINGH R B,et al. Mars color camera onboard Mars orbiter mission:initial observations and results[C]//46th Lunar and Planetary Science Conference. Woodlands,Texas:[s. n. ],2015.
[63] MISRA I,MOORTHI S M,DHAR D. Techniques developed for large area Mars image mosaic using ISRO's Mars Color Camera (MCC) data[J]. Journal of Geomatics,2019,13(1):106-110.
[64] 关昭,乔卫东,杨建峰,等. 火星多光谱相机的地面几何标定研究[J]. 深空探测学报(中英文),2018,5(5):465-471
GUAN Z,QIAO W D,YANG J F,et al. Ground geometric calibration of Mars multispectral camera[J]. Journal of Deep Space Exploration,2018,5(5):465-471
[65] WAN W H,YU T Y,DI K C,et al. Visual localization of the Tianwen-1lander using orbital,descent and rover images[J]. Remote Sensing,2021,13:3439
[66] GENG X,XU Q,WANG J Y,et al. Generation of large-scale orthophoto mosaics using MEX HRSC images for the candidate landing regions of China’s first Mars mission[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,60:5613520.
[67] 耿迅,徐青,邢帅,等. 火星快车HRSC线阵影像投影轨迹法近似核线重采样[J]. 武汉大学学报(信息科学版),2015,40(1):40-45
GENG X,XU Q,XING S,et al. Approximate epipolar resampling of Mars Express HRSC linear pushbroom imagery based on projection trajectory method[J]. Geomatics and Information Science of Wuhan University,2015,40(1):40-45
[68] GENG X,XU Q,XING S,et al. A novel pixel-level image matching method for Mars Express HRSC linear pushbroom imagery using approximate orthophotos[J]. Remote Sensing,2017,9(12):1262
[69] GENG X,XU Q,LAN C Z,et al. Orthorectification of planetary linear pushbroom images based on an improved back-projection algorithm[J]. IEEE Geoscience and Remote Sensing Letters,2019,16(6):854-858
[70] GENG X,XU Q,XING S,et al. A generic pushbroom sensor model for planetary photogrammetry[J]. Earth and Space Science,2020,7(5):e2019EA001014
[71] 李春来,刘建军,严韦,等. 小行星探测科学目标进展与展望[J]. 深空探测学报(中英文),2019,6(5):424-436
LI C L,LIU J J,YAN W,et al. Overview of scientific objectives for minor planets exploration[J]. Journal of Deep Space Exploration,2019,6(5):424-436
[72] BARNOUIN O S,DALY M G,PALMER E E,et al. Digital terrain mapping by the OSIRIS-REx mission[J]. Planetary and Space Science,2020,180:104764
[73] SCHOLTEN F,PREUSKER F,ELGNER S,et al. The Hayabusa2 lander MASCOT on the surface of asteroid (162173) Ryugu-Stereo-photogrammetric analysis of MASCam image data[J]. Astronomy & Astrophysics,2019,632:L5
[74] BUSSEY D B J,ROBINSON M S,EDWARDS K. 433 Eros global basemap from NEAR Shoemaker MSI images[J]. Icarus,2002,155:38-50
[75] GASKELL R W,BARNOUIN O S,SCHEERES D J,et al. Characterizing and navigating small bodies with imaging data[J]. Meteoritics & Planetary Science,2008,43(6):1049-1061
[76] PREUSKER F,SCHOLTEN F,MATZ K D,et al. Shape model,reference system definition,and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko. Stereo-photogrammetric analysis of Rosetta/OSIRIS image data[J]. Astronomy & Astrophysics,2015,583:A33
[77] ROATSCH T,KERSTEN E,MATZ K D,et al. High resolution Vesta High Altitude Mapping Orbit (HAMO) Atlas derived from Dawn framing camera images[J]. Planetary and Space Science,2012,73(1):283-286
[78] ROATSCH T,KERSTEN E,MATZ K D,et al. High-resolution Vesta low altitude mapping orbit atlas derived from Dawn framing camera images[J]. Planetary and Space Sciences,2013,85:293-298
[79] ROATSCH T,KERSTEN E,MATZ K D,et al. High-resolution Ceres high altitude mapping orbit atlas derived from Dawn framing camera images[J]. Planetary and Space Science,2016,129:103-107
[80] ROATSCH T,KERSTEN E,MATZ K D,et al. High-resolution Ceres low altitude mapping orbit atlas derived from dawn Framing Camera images[J]. Planetary and Space Science,2017,140:74-79
PDF(819 KB)

Accesses

Citations

Detail

Sections
Recommended

/