[1] ?DEMIRYONT H,SHANNON III K,PONNAPPAN R. Electrochromic devices for satellite thermal control[C]// Space Tech.&Applic. Int. Forum-staif 2006. [S.l]:AIP,2006.
[2] DAVID G G. Spacecraft thermal control handbook volume I:fundamental technologies[J]. Mechanical Engineering,2002(5):68
[3] DONABEDIAN M. Spacecraft thermal control handbook,volume II:cryogenics[M]. El Segundo,California:The Aerospace Press,2002.
[4] 范含林. 航天器热控材料的应用和发展[C]//航天材料及工艺研究所建所50周年科技论坛暨先进功能复合材料技术学术交流会、中国宇航学会材料工艺专业委员会2007年学术研讨会. 北京:中国宇航学会,2007.
FAN H L. Spacecraft thermal control materials[C]//The 50th Anniversary of the Institute of Aerospace Materials and Technology,BBS and Advanced Functional Composite Materials Technology Academic Exchange Meeting,China Aerospace Society Material Craft Professional Committee 2007 Academic Seminar. Beijing:Chinese Society of Astronautics,2007.
[5] 曹生珠,陈学康,吴敢,等. 航天器用可变发射率热控器件[C]//空间材料及其应用技术学术交流会. 北京:中国空间技术研究院,2011.
CAO S Z,CHEN X K,WU G,et al. Spacecraft variable emittance thermal control devices[C]//Proceedings of the Space Materials and Applied Technology Academic Exchange. Beijing:China Academy of Space Technology,2011.
[6] 刘东青,程海峰,郑文伟,等. 红外发射率可变材料在航天器热控技术中的应用[J]. 国防科技大学学报,2012,34(2):145-149
LIU D Q,CHENG H F,ZHENG W W,et al. Application of variable infrared-emissivity materials to spacecraft thermal control[J]. Journal of National University of Defense Technology,2012,34(2):145-149
[7] DOUGLAS D M,SWANSON T,OSIANDER R,et al. Development of the variable emittance thermal suite for the space technology 5 microsatellite[C]//AIP Conference Proceedings. Albuquerque,New Mexico:AIP,2002,608(1):204-210.
[8] 郭宁. 可变发射率热控器件的研究进展[J]. 真空与低温,2003,9(4):187-190
GUO N. The development of the variable emittance thermal suite[J]. Vacuum & Cryogenics,2003,9(4):187-190
[9] 潘增富. 微小卫星热控关键技术研究[J]. 航天器工程,2007,16(2):16-21
PAN Z F. Study on key thermal control technology for micro-satellite[J]. Spacecraft Engineering,2007,16(2):16-21
[10] PATTON S T,COWAN W D,ZABINSKI J S. Performance and reliability of a new MEMS electrostatic lateral output motor[C]//Reliability Physics Symposium Proceedings,1999. 37th Annual. 1999 IEEE International. San Diego,CA,USA:IEEE,1999:179-188.
[11] OSIANDER R,FIREBAUGH S L,CHAMPION J L,et al. Micro electromechanical devices for satellite thermal control[J]. IEEE Sensors Journal,2004,4(4):525-531
[12] OSIANDER R,CHAMPION J,DARRIN M,et al. Micro-machined shutter arrays for thermal control radiators on ST5[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Maryland:AIAA,2002:359.
[13] GARRISON D A,OSIANDER A R,CHAMPION J,et al. Variable emissivity through MEMS technology[C]//Thermal and Thermomechanical Phenomena in Electronic Systems,2000. ITHERM 2000. The Seventh Intersociety Conference on. Las Vegas:IEEE,2000(1):264-270.
[14] FARRAR D,DOUGLAS D M,SWANSON T,et al. MEMS shutters for thermal control-flight validation and lessons learned[C]//AIP Conference Proceedings. Albuquerque:AIP,2007,880(1):73-80.
[15] CAO S,CHEN X,WU G,et al. Study on design and fabrication of micro thermal control louvers[J]. Rare Metal Materials and Engineering,2011,394(40):249-251
[16] UENO A,SUZUKI Y. Parylene-based active micro space radiator with thermal contact switch[J]. Applied Physics Letters,2014,104(9):093511
[17] MOGHADDAM S,LAWLER J,CURRANO J,et al. Novel method for measurement of total hemispherical emissivity[J]. Journal of Thermophysics and Heat Transfer,2007,21(1):128-133
[18] MOGHADDAM S,LAWLER J,CURRANO J,et al. A space-based experiment to evaluate performance of electrostatic switched radiator(ESR)[J]. 2007(880):66-72.
[19] CURRANO J,MOGHADDAM S,LAWLER J,et al. Performance analysis of an electrostatic switched radiator using heat-flux-based emissivity measurement[J]. Journal of Thermophysics and Heat Transfer,2008,22(3):360-365
[20] BITER W,OH S,HESS S. Electrostatic switched radiator for space based thermal control[J]. 2002,608(8):73-80.
[21] BITER W,OH S. Performance results of the ESR from the space technology 5 satellites[J]. AIP Conference Proceedings,2007,880(1):59-65
[22] BITER W,HESS S,OH S. Development status of electrostatic switched radiator[C]//AIP Conference Proceedings. Albuquerque:AIP,2006,813(1):56-63.
[23] BITER W,HESS S,OH S. Electrostatic radiator for spacecraft temperature control[C]//AIP Conference Proceedings. Albuquerque:AIP,2004,699(1):96-102.
[24] BITER W,HESS S,OH S. Electrostatic appliqué for spacecraft temperature control[C]// AIP Conference Proceedings. Albuquerque:AIP,2003,654(1):162-171.
[25] BEASLEY M A,FIREBAUGH S L,EDWARDS R L,et al. Microfabricated thermal switches for emittance control[C]//AIP Conference Proceedings. Albuquerque:AIP,2004,699(1):119-125.
[26] ZHOU D,XIE D,XIA X,et al. All-solid-state electrochromic devices based on WO3||NiO films:material developments and future applications[J]. Science China Chemistry,2016,60(1):3-12
[27] PLATT J R. Electrochromism,a possible change of color producible in dyes by an electric field[J]. The Journal of Chemical Physics,1961,34(3):862-863
[28] KOO B R,AHN H J. Fast-switching electrochromic properties of mesoporous WO3 films with oxygen vacancy defects[J]. Nanoscale,2017,9(45):17788-17793
[29] KANU S S,BINIONS R. Thin films for solar control applications[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2009,466(2113):19-44
[30] DEB S K. A novel electrophotographic system[J]. Applied Optics,1969,8(101):192-195
[31] ZHANG H,MI M,MIAO J,et al. Development and on-orbit operation of loop heat pipes on Chinese circumlunar return and reentry spacecraft[J]. Journal of Mechanical Science and Technology,2017,31(6):2597-2605
[32] SWANSON T D,BIRUR G C. NASA thermal control technologies for robotic spacecraft[J]. Applied Thermal Engineering,2003,23(9):1055-1065
[33] REAY D A. Heat pipes[J]. Physics in Technology,2002,3(19):311-319
[34] REAY D,HARVEY A. The role of heat pipes in intensified unit operations[J]. Applied Thermal Engineering,2013,57(1-2):147-153
[35] HOU Z Q,HUA C S,GUO S,et al. Performance investigation and application of grooved heat pipes[C]//American Institute of Aeronautics and Astronautics,Thermophysics Conference 14th. Orlando,Florida,1979
[36] RAJESWARAN B,PRADHAN J K,ANANTHA RAMAKRISHNA S,et al. Thermochromic VO2 thin films on ITO-coated glass substrates for broadband high absorption at infra-red frequencies[J]. Journal of Applied Physics,2017,122(16):163107
[37] ZHANG J,JIN H,CHEN Z,et al. Self-Assembling VO2 nanonet with high switching performance at wafer-scale[J]. Chemistry of Materials,2015,27(21):7419-7424
[38] GUO D,ZHAO Z,LI J,et al. Symmetric confined growth of superstructured vanadium dioxide nanonet with a regular geometrical pattern by a solution approach[J]. Crystal Growth & Design,2017,17(11):5838-5844
[39] ZHANG J,ZHAO Z,LI J,et al. Evolution of structural and electrical properties of oxygen-deficient VO2 under low temperature heating process[J]. ACS Appl. Mater Interfaces,2017,9(32):27135-27141
[40] ZHANG J,LI J,CHEN P,et al. Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance[J]. Scientific Reports,2016(6):27898
[41] HENGEVELD D,MATHISON M,BRAUN J,et al. Review of modern spacecraft thermal control technologies[J]. HVAC&R Research,2010,16(2):189-220
[42] SUNADA E,LANKFORD K,PAUKEN M,et al. Wax-actuated heat switch for Mars surface applications[C]//AIP Conference Proceedings. Albuquerque: AIP,2002,608(1):211-213.
[43] NAGANO H,NAGASAKA Y,OHNISHI A. Development of a flexible thermal control device with high-thermal-conductivity graphite sheets[R]. [s.l]: SAE Technical Paper,2003.
[44] NAGANO H,NAGASAKA Y,OHNISHI A. Simple deployable radiator with autonomous thermal control function[J]. Journal of Thermophysics & Heat Transfer,2006,20(20):856-864
[45] NAGANO H,OHNISHI A,HIGUCHI K,et al. Experimental investigation of a passive deployable/stowable radiator[J]. Journal of Spacecraft and Rockets,2009,46(1):185-190
[46] 闵桂荣. 航天器热控制[M]. 北京:科学出版社,1998.
MIN G R. Spacecraft thermal control[M]. Beijing:Science Press,1998.
[47] 侯增祺,闵桂荣. 浅析航天器热控技术的预先研究及其应用研究[J]. 航天器工程,2004,13(2):1-9
HOU Z Q,MIN G R. Preliminary study on spacecraft thermal control technology and its application[J]. Spacecraft Engineering,2004,13(2):1-9
[48] KIM T,HAN S-H,OH H-U. Design and performance evaluation of MEMS-Based spaceborne variable emissivity radiator using movement of electrified beads[J]. Journal of Microelectromechanical Systems,2017,26(1):113-119
[49] CARPENTER M K,CONELL R S,CORRIGAN D A. The electrochromic properties of hydrous nickel oxide[J]. Solar Energy Materials,1987,16(4):333-346
[50] DEMIRYONT H,SHANNON III K C. Variable emittance electrochromic devices for satellite thermal control[C]//AIP Conference Proceedings. Albuquerque:AIP,2007,880(1):51-58.
[51] DEMIRYONT H,SHANNON K,WILLIAMS A. Emissivity modulating electro-chromic device[C]//Thermosense XXX. Orlando:International Society for Optics and Photonics,2008.
[52] CHANDRASEKHAR P,ZAY B J,MCQUEENEY T,et al. Variable emittance materials based on conducting polymers for spacecraft thermal control[C]//AIP Conference Proceedings. Albuquerque:AIP,2003,654(1):157-161.
[53] 何延春,邱家稳. 直流磁控溅射沉积WO3薄膜电致变色性能研究[J]. 真空与低温,2007,13(1):16-20
HE Y C,QIU J W. The Electrochromic properties of WO3 thin films by DC magentron sputtering[J]. Vacuum & Cryogenics,2007,13(1):16-20
[54] CAMIRAND H,BALOUKAS B,KLEMBERG-SAPIEHA J E,et al. In situ spectroscopic ellipsometry of electrochromic amorphous tungsten oxide films[J]. Solar Energy Materials and Solar Cells,2015(140):77-85
[55] BO G,WANG X,WANG K,et al. Preparation and electrochromic performance of NiO/TiO2 nanorod composite film[J]. Journal of Alloys and Compounds,2017(728):878-886
[56] BUGBY D,MARLAND B,STOUFFER C,et al. Across‐gimbal and miniaturized cryogenic loop heat pipes[C]//AIP Conference Proceedings. Albuquerque:AIP,2003,654(1):218-226.
[57] BUGBY D C,KROLICZEK E J,YUN J S. Development and testing of a miniaturized multi‐evaporator hybrid loop heat pipe[C]//AIP Conference Proceedings. Albuquerque:AIP,2005,746(1):69-81.
[58] BUGBY D,WRENN K,WOLF D,et al. Multi-evaporator hybrid loop heat pipe for small spacecraft thermal management[C]//Aerospace Conference,2005 IEEE. Montana:IEEE,2005:810-823.
[59] DUTRA T,RIEHL R R. Loop heat pipe:design and performance during operation[C]//AIP Conference Proceedings. Albuquerque:AIP,2004,699(1):51-58.
[60] BAKER C L,GROB E W,MCCARTHY T V,et al. Geoscience laser altimetry system(GLAS)on‐orbit flight report on the propylene loop heat pipes(LHPs)[C]//AIP Conference Proceedings. Albuquerque:AIP,2004,699(1):88-95.
[61] 刘佳,李运泽,常静,等. 微小卫星热控系统的研究现状及发展趋势[J]. 航天器环境工程,2011,28(1):77-82
LIU J,LI Y Z,CHANG J,et al. Research status and development trend of micro satellite thermal control system[J]. Spacecraft Environment Engineering,2011,28(1):77-82
[62] AARON K.Spacecraft thermal control handbook,volume 1:fundamental technologies[M]. El Segundo:The Aerospace Press,2002.
[63] MARLAND B,BUGBY D,STOUFFER C. Development and testing of advanced cryogenic thermal switch concepts[C]//AIP Conference Proceedings. Albuquerque:AIP,2000,504(1):837-846.
[64] HAFER W,VITALE N,MACRIS C,et al. Design of a variable thermal layer (VTL) for a generic satellite component interface[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,16th AIAA/ASME/AHS Adaptive Structures Conference,10th AIAA Non-Deterministic Approaches Conference,9th AIAA Gossamer Spacecraft Forum,4th AIAA Multidisciplinary Design Optimization Specialists Conference. Illinois:AIAA,2008:2259.
[65] GONG J,CHA G,JU Y S. Thermal switches based on coplanar EWOD for satellite thermal control[C]//Micro Electro Mechanical Systems,2008. MEMS 2008. IEEE 21st International Conference on. Arizona:IEEE,2008:848-851.
[66] PICKETT W E,SINGH D J. Electronic structure and half-metallic transport in the La1-xCaxMnO3 system[J]. Phys Rev B Condens Matter,1996,53(3):1146-1160
[67] JONKER G H. Semiconducting properties of mixed crystals with perovskite structure [J]. Physica,1954,20(7-12):1118-1122
[68] JONKER G H,SANTEN J H V. Ferromagnetic compounds of manganese with perovskite structure[J]. Physica,1950,16(3):337-349
[69] JONKER G H,SANTEN J H V. Magnetic compounds wtth perovskite structure III. ferromagnetic compounds of cobalt[J]. Physica,1953,19(1):120-130
[70] SHIMAKAWA Y,YOSHITAKE T,KUBO Y,et al. A variable-emittance radiator based on a metal-insulator transition of(La,Sr)MnO3 thin films[J]. Applied Physics Letters,2002,80(25):4864-4866
[71] TANG G,YU Y,CAO Y,et al. The thermochromic properties of La1-xSrxMnO3 compounds[J]. Solar Energy Materials and Solar Cells,2008,92(10):1298-1301
[72] SHEN X,XU G,SHAO C,et al. Temperature dependence of infrared emissivity of doped manganese oxides in different wavebands (3-5 and 8-14 μm)[J]. Journal of Alloys and Compounds,2009,479(1-2):420-422
[73] SHEN X,XU G,SHAO C. The effect of B site doping on infrared emissivity of lanthanum manganites La0.8Sr0.2Mn1-xBxO3(B=Ti or Cu)[J]. Journal of Alloys and Compounds,2010,499(2):212-214
[74] SHIMAZAKI K,TACHIKAWA S,OHNISHI A,et al. Radiative and optical properties of La1-x SrxMnO3 (0≤x≤0.4) in the vicinity of metal-insulator transition temperatures from 173 to 413K[J]. International Journal of Thermophysics,2001,22(5):1549-1561
[75] TACHIKAWA S,OHNISHI A,SHIMAKAWA Y,et al. Development of a variable emittance radiator based on a perovskite manganese oxide[J]. Journal of Thermophysics and Heat Transfer,2003,17(2):264-268
[76] FAN D,LI Q,DAI P. Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films[J]. Acta Astronautica,2016(121):144-152
[77] LU T,FAN D,LI Q,et al. Nanometer thick thermochromic film based on K-doped manganite oxide prepared by magnetron sputtering[J]. Journal of Alloys and Compounds,2017(704):366-372
[78] SHIOTA T,MORI Y,SUGIYAMA J,et al. Preparation of (La1-xSrx)MnO3-δ thin films on Si (100) substrates by a metal-organic decomposition method for smart radiation devices[J]. Thin Solid Films,2017(626):154-158
[79] MORIN F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Physical Review Letters,1959,3(1):34-36
[80] CAVALLERI A,DEKORSY T,CHONG H H W,et al. Evidence for a structurally-driven insulator-to-metal transition inVO2:A view from the ultrafast timescale[J]. Physical Review B,2004,70(16):161102
[81] ZHANG Z,GAO Y,CHEN Z,et al. Thermochromic VO2 thin films:solution-based processing,improved optical properties,and lowered phase transformation temperature[J]. Langmuir,2010,26(13):10738-10744
[82] GUINNETON F,SAUQUES L,VALMALETTE J C. Role of surface defects and microstructure in infrared optical properties of thermochromic VO2 materials[J]. Journal of Physics & Chemistry of Solids,2005,66(1):63-73
[83] BENKAHOUL M,CHAKER M,MARGOT J,et al. Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications[J]. Solar Energy Materials & Solar Cells,2011,95(12):3504-3508
[84] HENDAOUI A,ÉMOND N,CHAKER M,et al. Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films[J]. Applied Physics Letters,2013,102(6):061107
[85] HENDAOUI A,ÉMOND N,DORVAL S,et al. VO2-based smart coatings with improved emittance-switching properties for an energy-efficient near room-temperature thermal control of spacecrafts[J]. Solar Energy Materials and Solar Cells,2013(117):494-498
[86] HENDAOUI A,ÉMOND N,DORVAL S,et al. Enhancement of the positive emittance-switching performance of thermochromic VO2 films deposited on Al substrate for an efficient passive thermal control of spacecrafts[J]. Current Applied Physics,2013,13(5):875-879
[87] TAYLOR S,YANG Y,WANG L. Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2017(197):76-83
[88] KRUZELECKY R V,HADDAD E,WONG B,et al. Variable emittance thermochromic material and satellite system:U.S. Patent 7,761,053[P]. USA:[s.n],2010.
[89] BENKAHOUL M,HADDAD E,KRUZELECKY R,et al. Multilayer tuneable emittance coatings,with higher emittance for improved smart thermal control in space applications[C]//40th International Conference on Environmental Systems. [S.l]:AIAA,2010.
[90] JIANG X,SOLTANI M,HADDAD E,et al. Effects of atomic oxygen on the thermochromic characteristics of VO2 coating[J]. Journal of Spacecraft and Rockets,2006,43(3):497-500
[91] VOTI R L,LARCIPRETE M C,LEAHU G,et al. Optimization of thermochromic VO2 based structures with tunable thermal emissivity[J]. Journal of Applied Physics,2012,112(3):1750-1466
[92] FENG Y D,WANG Z M,MA Y L,et al. Thin film design for advanced thermochromic smart radiator devices[J]. Chinese Physics,2007,16(6):1704-1709
[93] 闫璐,王孝,曹韫真,等. 基于二氧化钒的辐射率可调涂层设计[J]. 宇航材料工艺,2016,46(3):22-26
YAN L,WANG X,CAO Y Z,et al. Structure design of V02-based multilayer structure with tunable emittance[J]. Aerospace Materials and Technology,2016,46(3):22-26
[94] WANG X,CAO Y,ZHANG Y,et al. Fabrication of VO2-based multilayer structure with variable emittance[J]. Applied Surface Science,2015(344):230-235
[95] RATHI S,LEE I-Y,PARK J-H,et al. Postfabrication annealing effects on insulator-metal transitions in VO2 Thin-film devices[J]. ACS applied materials & interfaces,2014,6(22):19718-19725
[96] CASE F C. Modifications in the phase transition properties of predeposited VO2 films[J]. Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1984,2(4):1509-1512
[97] CHANG T,CAO X,DEDON L R,et al. Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings[J]. Nano Energy,2018(44):256-264
[98] FAN L,CHEN S,WU Y,et al. Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy[J]. Applied Physics Letters,2013,103(13):131914
[99] PAN M,ZHONG H,WANG S,et al. Properties of VO2 thin film prepared with precursor VO(ACAC)2[J]. Journal of Crystal Growth,2004,265(1-2):121-126
[100] GRAF D,SCHLÄFER J,GARBE S,et al. Interdependence of structure,morphology,and phase transitions in CVD grown VO2 and V2O3 nanostructures[J]. Chemistry of Materials,2017,29(14):5877-5885
[101] PARTLOW D,GURKOVICH S,RADFORD K,et al. Switchable vanadium oxide films by a sol‐gel process[J]. Journal of Applied Physics,1991,70(1):443-452
[102] DOU Y K,LI J B,CAO M S,et al. Oxidizing annealing effects on VO2 films with different microstructures[J]. Applied Surface Science,2015(345):232-237
[103] JEONG J,AETUKURI N,GRAF T,et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation[J]. Science,2013,339(6126):1402-1405
[104] NAKANO M,SHIBUYA K,OGAWA N,et al. Infrared-sensitive electrochromic device based on VO2[J]. Applied Physics Letters,2013,103(15):153503
[105] WU T-L,WHITTAKER L,BANERJEE S,et al. Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires[J]. Physical Review B,2011,83(7):073101
[106] ZHANG R,JIN H B,GUO D,et al. The role of Fe dopants in phase stability and electric switching properties of Fe-doped VO2[J]. Ceramics International,2016,42(16):18764-18770
[107] JIN P,NAKAO S,TANEMURA S. Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing[J]. Thin Solid Films,1998,324(1):151-158
[108] PAN G,YIN J,JI K,et al. Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method[J]. Scientific Reports,2017,7(1):6132
[109] MAI L,HU B,HU T,et al. Electrical property of mo-doped VO2 nanowire array film by melting-quenching sol-gel method[J]. The Journal of Physical Chemistry B,2006,110(39):19083-19086
[110] QUESADA-CABRERA R,POWELL M J,MARCHAND P,et al. Scalable production of thermochromic Nb-Doped VO2 nanomaterials using continuous hydrothermal flow synthesis[J]. Journal of Nanoscience and Nanotechnology,2016,16(9):10104-10111
[111] HE X,ZENG Y,XU X,et al. Orbital change manipulation metal-insulator transition temperature in W-doped VO2[J]. Physical Chemistry Chemical Physics,2015,17(17):11638-11646
[112] REN Q,WAN J,GAO Y. Theoretical study of electronic properties of X-Doped (X=F,Cl,Br,I) VO2 nanoparticles for thermochromic energy-saving foils[J]. The Journal of Physical Chemistry A,2014,118(46):11114-11118
[113] WAN J,REN Q,WU N,et al. Density functional theory study of M-doped (M=B,C,N,Mg,Al) VO2 nanoparticles for thermochromic energy-saving foils[J]. Journal of Alloys and Compounds,2016(662):621-627