Development of Variable-Emittance Thermal Control Technology

JIN Haibo1,2, LING Chen1,2, LI Jingbo1,2

PDF(1458 KB)
PDF(1458 KB)
Journal of Deep Space Exploration ›› 2018, Vol. 5 ›› Issue (2) : 188-200. DOI: 10.15982/j.issn.2095-7777.2018.02.012

Development of Variable-Emittance Thermal Control Technology

  • JIN Haibo1,2, LING Chen1,2, LI Jingbo1,2
Author information +
History +

Abstract

Small and micro-satellites are playing more and more important role in current and future space missions. Small spacecraft provide limited space and weight for thermal control system. As an important thermal control technology of spacecraft,the variable emittance devices is of great significance for reducing the load and volume of spacecraft as well as adapting to wide temperature swing in space. Thermochromic smart variable emittance devices can meet the loading requirement of small spacecraft and realize efficient thermal control. The basic principles and progress of both active and passive emittance thermal control devices are summarized. In which,the vanadium dioxide based thermochromic variable emittance thermal control device is introduced in detail. The basic principle,preparation methods and research progress are presented,and the development of variable-emittance thermal control technology is prospected.

Keywords

satellite / thermal control technology / variable emittance / vanadium dioxide / thermochromism

Cite this article

Download citation ▾
JIN Haibo, LING Chen, LI Jingbo. Development of Variable-Emittance Thermal Control Technology. Journal of Deep Space Exploration, 2018, 5(2): 188‒200 https://doi.org/10.15982/j.issn.2095-7777.2018.02.012

References

[1] ?DEMIRYONT H,SHANNON III K,PONNAPPAN R. Electrochromic devices for satellite thermal control[C]// Space Tech.&Applic. Int. Forum-staif 2006. [S.l]:AIP,2006.
[2] DAVID G G. Spacecraft thermal control handbook volume I:fundamental technologies[J]. Mechanical Engineering,2002(5):68
[3] DONABEDIAN M. Spacecraft thermal control handbook,volume II:cryogenics[M]. El Segundo,California:The Aerospace Press,2002.
[4] 范含林. 航天器热控材料的应用和发展[C]//航天材料及工艺研究所建所50周年科技论坛暨先进功能复合材料技术学术交流会、中国宇航学会材料工艺专业委员会2007年学术研讨会. 北京:中国宇航学会,2007.
FAN H L. Spacecraft thermal control materials[C]//The 50th Anniversary of the Institute of Aerospace Materials and Technology,BBS and Advanced Functional Composite Materials Technology Academic Exchange Meeting,China Aerospace Society Material Craft Professional Committee 2007 Academic Seminar. Beijing:Chinese Society of Astronautics,2007.
[5] 曹生珠,陈学康,吴敢,等. 航天器用可变发射率热控器件[C]//空间材料及其应用技术学术交流会. 北京:中国空间技术研究院,2011.
CAO S Z,CHEN X K,WU G,et al. Spacecraft variable emittance thermal control devices[C]//Proceedings of the Space Materials and Applied Technology Academic Exchange. Beijing:China Academy of Space Technology,2011.
[6] 刘东青,程海峰,郑文伟,等. 红外发射率可变材料在航天器热控技术中的应用[J]. 国防科技大学学报,2012,34(2):145-149
LIU D Q,CHENG H F,ZHENG W W,et al. Application of variable infrared-emissivity materials to spacecraft thermal control[J]. Journal of National University of Defense Technology,2012,34(2):145-149
[7] DOUGLAS D M,SWANSON T,OSIANDER R,et al. Development of the variable emittance thermal suite for the space technology 5 microsatellite[C]//AIP Conference Proceedings. Albuquerque,New Mexico:AIP,2002,608(1):204-210.
[8] 郭宁. 可变发射率热控器件的研究进展[J]. 真空与低温,2003,9(4):187-190
GUO N. The development of the variable emittance thermal suite[J]. Vacuum & Cryogenics,2003,9(4):187-190
[9] 潘增富. 微小卫星热控关键技术研究[J]. 航天器工程,2007,16(2):16-21
PAN Z F. Study on key thermal control technology for micro-satellite[J]. Spacecraft Engineering,2007,16(2):16-21
[10] PATTON S T,COWAN W D,ZABINSKI J S. Performance and reliability of a new MEMS electrostatic lateral output motor[C]//Reliability Physics Symposium Proceedings,1999. 37th Annual. 1999 IEEE International. San Diego,CA,USA:IEEE,1999:179-188.
[11] OSIANDER R,FIREBAUGH S L,CHAMPION J L,et al. Micro electromechanical devices for satellite thermal control[J]. IEEE Sensors Journal,2004,4(4):525-531
[12] OSIANDER R,CHAMPION J,DARRIN M,et al. Micro-machined shutter arrays for thermal control radiators on ST5[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Maryland:AIAA,2002:359.
[13] GARRISON D A,OSIANDER A R,CHAMPION J,et al. Variable emissivity through MEMS technology[C]//Thermal and Thermomechanical Phenomena in Electronic Systems,2000. ITHERM 2000. The Seventh Intersociety Conference on. Las Vegas:IEEE,2000(1):264-270.
[14] FARRAR D,DOUGLAS D M,SWANSON T,et al. MEMS shutters for thermal control-flight validation and lessons learned[C]//AIP Conference Proceedings. Albuquerque:AIP,2007,880(1):73-80.
[15] CAO S,CHEN X,WU G,et al. Study on design and fabrication of micro thermal control louvers[J]. Rare Metal Materials and Engineering,2011,394(40):249-251
[16] UENO A,SUZUKI Y. Parylene-based active micro space radiator with thermal contact switch[J]. Applied Physics Letters,2014,104(9):093511
[17] MOGHADDAM S,LAWLER J,CURRANO J,et al. Novel method for measurement of total hemispherical emissivity[J]. Journal of Thermophysics and Heat Transfer,2007,21(1):128-133
[18] MOGHADDAM S,LAWLER J,CURRANO J,et al. A space-based experiment to evaluate performance of electrostatic switched radiator(ESR)[J]. 2007(880):66-72.
[19] CURRANO J,MOGHADDAM S,LAWLER J,et al. Performance analysis of an electrostatic switched radiator using heat-flux-based emissivity measurement[J]. Journal of Thermophysics and Heat Transfer,2008,22(3):360-365
[20] BITER W,OH S,HESS S. Electrostatic switched radiator for space based thermal control[J]. 2002,608(8):73-80.
[21] BITER W,OH S. Performance results of the ESR from the space technology 5 satellites[J]. AIP Conference Proceedings,2007,880(1):59-65
[22] BITER W,HESS S,OH S. Development status of electrostatic switched radiator[C]//AIP Conference Proceedings. Albuquerque:AIP,2006,813(1):56-63.
[23] BITER W,HESS S,OH S. Electrostatic radiator for spacecraft temperature control[C]//AIP Conference Proceedings. Albuquerque:AIP,2004,699(1):96-102.
[24] BITER W,HESS S,OH S. Electrostatic appliqué for spacecraft temperature control[C]// AIP Conference Proceedings. Albuquerque:AIP,2003,654(1):162-171.
[25] BEASLEY M A,FIREBAUGH S L,EDWARDS R L,et al. Microfabricated thermal switches for emittance control[C]//AIP Conference Proceedings. Albuquerque:AIP,2004,699(1):119-125.
[26] ZHOU D,XIE D,XIA X,et al. All-solid-state electrochromic devices based on WO3||NiO films:material developments and future applications[J]. Science China Chemistry,2016,60(1):3-12
[27] PLATT J R. Electrochromism,a possible change of color producible in dyes by an electric field[J]. The Journal of Chemical Physics,1961,34(3):862-863
[28] KOO B R,AHN H J. Fast-switching electrochromic properties of mesoporous WO3 films with oxygen vacancy defects[J]. Nanoscale,2017,9(45):17788-17793
[29] KANU S S,BINIONS R. Thin films for solar control applications[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2009,466(2113):19-44
[30] DEB S K. A novel electrophotographic system[J]. Applied Optics,1969,8(101):192-195
[31] ZHANG H,MI M,MIAO J,et al. Development and on-orbit operation of loop heat pipes on Chinese circumlunar return and reentry spacecraft[J]. Journal of Mechanical Science and Technology,2017,31(6):2597-2605
[32] SWANSON T D,BIRUR G C. NASA thermal control technologies for robotic spacecraft[J]. Applied Thermal Engineering,2003,23(9):1055-1065
[33] REAY D A. Heat pipes[J]. Physics in Technology,2002,3(19):311-319
[34] REAY D,HARVEY A. The role of heat pipes in intensified unit operations[J]. Applied Thermal Engineering,2013,57(1-2):147-153
[35] HOU Z Q,HUA C S,GUO S,et al. Performance investigation and application of grooved heat pipes[C]//American Institute of Aeronautics and Astronautics,Thermophysics Conference 14th. Orlando,Florida,1979
[36] RAJESWARAN B,PRADHAN J K,ANANTHA RAMAKRISHNA S,et al. Thermochromic VO2 thin films on ITO-coated glass substrates for broadband high absorption at infra-red frequencies[J]. Journal of Applied Physics,2017,122(16):163107
[37] ZHANG J,JIN H,CHEN Z,et al. Self-Assembling VO2 nanonet with high switching performance at wafer-scale[J]. Chemistry of Materials,2015,27(21):7419-7424
[38] GUO D,ZHAO Z,LI J,et al. Symmetric confined growth of superstructured vanadium dioxide nanonet with a regular geometrical pattern by a solution approach[J]. Crystal Growth & Design,2017,17(11):5838-5844
[39] ZHANG J,ZHAO Z,LI J,et al. Evolution of structural and electrical properties of oxygen-deficient VO2 under low temperature heating process[J]. ACS Appl. Mater Interfaces,2017,9(32):27135-27141
[40] ZHANG J,LI J,CHEN P,et al. Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance[J]. Scientific Reports,2016(6):27898
[41] HENGEVELD D,MATHISON M,BRAUN J,et al. Review of modern spacecraft thermal control technologies[J]. HVAC&R Research,2010,16(2):189-220
[42] SUNADA E,LANKFORD K,PAUKEN M,et al. Wax-actuated heat switch for Mars surface applications[C]//AIP Conference Proceedings. Albuquerque: AIP,2002,608(1):211-213.
[43] NAGANO H,NAGASAKA Y,OHNISHI A. Development of a flexible thermal control device with high-thermal-conductivity graphite sheets[R]. [s.l]: SAE Technical Paper,2003.
[44] NAGANO H,NAGASAKA Y,OHNISHI A. Simple deployable radiator with autonomous thermal control function[J]. Journal of Thermophysics & Heat Transfer,2006,20(20):856-864
[45] NAGANO H,OHNISHI A,HIGUCHI K,et al. Experimental investigation of a passive deployable/stowable radiator[J]. Journal of Spacecraft and Rockets,2009,46(1):185-190
[46] 闵桂荣. 航天器热控制[M]. 北京:科学出版社,1998.
MIN G R. Spacecraft thermal control[M]. Beijing:Science Press,1998.
[47] 侯增祺,闵桂荣. 浅析航天器热控技术的预先研究及其应用研究[J]. 航天器工程,2004,13(2):1-9
HOU Z Q,MIN G R. Preliminary study on spacecraft thermal control technology and its application[J]. Spacecraft Engineering,2004,13(2):1-9
[48] KIM T,HAN S-H,OH H-U. Design and performance evaluation of MEMS-Based spaceborne variable emissivity radiator using movement of electrified beads[J]. Journal of Microelectromechanical Systems,2017,26(1):113-119
[49] CARPENTER M K,CONELL R S,CORRIGAN D A. The electrochromic properties of hydrous nickel oxide[J]. Solar Energy Materials,1987,16(4):333-346
[50] DEMIRYONT H,SHANNON III K C. Variable emittance electrochromic devices for satellite thermal control[C]//AIP Conference Proceedings. Albuquerque:AIP,2007,880(1):51-58.
[51] DEMIRYONT H,SHANNON K,WILLIAMS A. Emissivity modulating electro-chromic device[C]//Thermosense XXX. Orlando:International Society for Optics and Photonics,2008.
[52] CHANDRASEKHAR P,ZAY B J,MCQUEENEY T,et al. Variable emittance materials based on conducting polymers for spacecraft thermal control[C]//AIP Conference Proceedings. Albuquerque:AIP,2003,654(1):157-161.
[53] 何延春,邱家稳. 直流磁控溅射沉积WO3薄膜电致变色性能研究[J]. 真空与低温,2007,13(1):16-20
HE Y C,QIU J W. The Electrochromic properties of WO3 thin films by DC magentron sputtering[J]. Vacuum & Cryogenics,2007,13(1):16-20
[54] CAMIRAND H,BALOUKAS B,KLEMBERG-SAPIEHA J E,et al. In situ spectroscopic ellipsometry of electrochromic amorphous tungsten oxide films[J]. Solar Energy Materials and Solar Cells,2015(140):77-85
[55] BO G,WANG X,WANG K,et al. Preparation and electrochromic performance of NiO/TiO2 nanorod composite film[J]. Journal of Alloys and Compounds,2017(728):878-886
[56] BUGBY D,MARLAND B,STOUFFER C,et al. Across‐gimbal and miniaturized cryogenic loop heat pipes[C]//AIP Conference Proceedings. Albuquerque:AIP,2003,654(1):218-226.
[57] BUGBY D C,KROLICZEK E J,YUN J S. Development and testing of a miniaturized multi‐evaporator hybrid loop heat pipe[C]//AIP Conference Proceedings. Albuquerque:AIP,2005,746(1):69-81.
[58] BUGBY D,WRENN K,WOLF D,et al. Multi-evaporator hybrid loop heat pipe for small spacecraft thermal management[C]//Aerospace Conference,2005 IEEE. Montana:IEEE,2005:810-823.
[59] DUTRA T,RIEHL R R. Loop heat pipe:design and performance during operation[C]//AIP Conference Proceedings. Albuquerque:AIP,2004,699(1):51-58.
[60] BAKER C L,GROB E W,MCCARTHY T V,et al. Geoscience laser altimetry system(GLAS)on‐orbit flight report on the propylene loop heat pipes(LHPs)[C]//AIP Conference Proceedings. Albuquerque:AIP,2004,699(1):88-95.
[61] 刘佳,李运泽,常静,等. 微小卫星热控系统的研究现状及发展趋势[J]. 航天器环境工程,2011,28(1):77-82
LIU J,LI Y Z,CHANG J,et al. Research status and development trend of micro satellite thermal control system[J]. Spacecraft Environment Engineering,2011,28(1):77-82
[62] AARON K.Spacecraft thermal control handbook,volume 1:fundamental technologies[M]. El Segundo:The Aerospace Press,2002.
[63] MARLAND B,BUGBY D,STOUFFER C. Development and testing of advanced cryogenic thermal switch concepts[C]//AIP Conference Proceedings. Albuquerque:AIP,2000,504(1):837-846.
[64] HAFER W,VITALE N,MACRIS C,et al. Design of a variable thermal layer (VTL) for a generic satellite component interface[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,16th AIAA/ASME/AHS Adaptive Structures Conference,10th AIAA Non-Deterministic Approaches Conference,9th AIAA Gossamer Spacecraft Forum,4th AIAA Multidisciplinary Design Optimization Specialists Conference. Illinois:AIAA,2008:2259.
[65] GONG J,CHA G,JU Y S. Thermal switches based on coplanar EWOD for satellite thermal control[C]//Micro Electro Mechanical Systems,2008. MEMS 2008. IEEE 21st International Conference on. Arizona:IEEE,2008:848-851.
[66] PICKETT W E,SINGH D J. Electronic structure and half-metallic transport in the La1-xCaxMnO3 system[J]. Phys Rev B Condens Matter,1996,53(3):1146-1160
[67] JONKER G H. Semiconducting properties of mixed crystals with perovskite structure [J]. Physica,1954,20(7-12):1118-1122
[68] JONKER G H,SANTEN J H V. Ferromagnetic compounds of manganese with perovskite structure[J]. Physica,1950,16(3):337-349
[69] JONKER G H,SANTEN J H V. Magnetic compounds wtth perovskite structure III. ferromagnetic compounds of cobalt[J]. Physica,1953,19(1):120-130
[70] SHIMAKAWA Y,YOSHITAKE T,KUBO Y,et al. A variable-emittance radiator based on a metal-insulator transition of(La,Sr)MnO3 thin films[J]. Applied Physics Letters,2002,80(25):4864-4866
[71] TANG G,YU Y,CAO Y,et al. The thermochromic properties of La1-xSrxMnO3 compounds[J]. Solar Energy Materials and Solar Cells,2008,92(10):1298-1301
[72] SHEN X,XU G,SHAO C,et al. Temperature dependence of infrared emissivity of doped manganese oxides in different wavebands (3-5 and 8-14 μm)[J]. Journal of Alloys and Compounds,2009,479(1-2):420-422
[73] SHEN X,XU G,SHAO C. The effect of B site doping on infrared emissivity of lanthanum manganites La0.8Sr0.2Mn1-xBxO3(B=Ti or Cu)[J]. Journal of Alloys and Compounds,2010,499(2):212-214
[74] SHIMAZAKI K,TACHIKAWA S,OHNISHI A,et al. Radiative and optical properties of La1-x SrxMnO3 (0≤x≤0.4) in the vicinity of metal-insulator transition temperatures from 173 to 413K[J]. International Journal of Thermophysics,2001,22(5):1549-1561
[75] TACHIKAWA S,OHNISHI A,SHIMAKAWA Y,et al. Development of a variable emittance radiator based on a perovskite manganese oxide[J]. Journal of Thermophysics and Heat Transfer,2003,17(2):264-268
[76] FAN D,LI Q,DAI P. Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films[J]. Acta Astronautica,2016(121):144-152
[77] LU T,FAN D,LI Q,et al. Nanometer thick thermochromic film based on K-doped manganite oxide prepared by magnetron sputtering[J]. Journal of Alloys and Compounds,2017(704):366-372
[78] SHIOTA T,MORI Y,SUGIYAMA J,et al. Preparation of (La1-xSrx)MnO3-δ thin films on Si (100) substrates by a metal-organic decomposition method for smart radiation devices[J]. Thin Solid Films,2017(626):154-158
[79] MORIN F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Physical Review Letters,1959,3(1):34-36
[80] CAVALLERI A,DEKORSY T,CHONG H H W,et al. Evidence for a structurally-driven insulator-to-metal transition inVO2:A view from the ultrafast timescale[J]. Physical Review B,2004,70(16):161102
[81] ZHANG Z,GAO Y,CHEN Z,et al. Thermochromic VO2 thin films:solution-based processing,improved optical properties,and lowered phase transformation temperature[J]. Langmuir,2010,26(13):10738-10744
[82] GUINNETON F,SAUQUES L,VALMALETTE J C. Role of surface defects and microstructure in infrared optical properties of thermochromic VO2 materials[J]. Journal of Physics & Chemistry of Solids,2005,66(1):63-73
[83] BENKAHOUL M,CHAKER M,MARGOT J,et al. Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications[J]. Solar Energy Materials & Solar Cells,2011,95(12):3504-3508
[84] HENDAOUI A,ÉMOND N,CHAKER M,et al. Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films[J]. Applied Physics Letters,2013,102(6):061107
[85] HENDAOUI A,ÉMOND N,DORVAL S,et al. VO2-based smart coatings with improved emittance-switching properties for an energy-efficient near room-temperature thermal control of spacecrafts[J]. Solar Energy Materials and Solar Cells,2013(117):494-498
[86] HENDAOUI A,ÉMOND N,DORVAL S,et al. Enhancement of the positive emittance-switching performance of thermochromic VO2 films deposited on Al substrate for an efficient passive thermal control of spacecrafts[J]. Current Applied Physics,2013,13(5):875-879
[87] TAYLOR S,YANG Y,WANG L. Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2017(197):76-83
[88] KRUZELECKY R V,HADDAD E,WONG B,et al. Variable emittance thermochromic material and satellite system:U.S. Patent 7,761,053[P]. USA:[s.n],2010.
[89] BENKAHOUL M,HADDAD E,KRUZELECKY R,et al. Multilayer tuneable emittance coatings,with higher emittance for improved smart thermal control in space applications[C]//40th International Conference on Environmental Systems. [S.l]:AIAA,2010.
[90] JIANG X,SOLTANI M,HADDAD E,et al. Effects of atomic oxygen on the thermochromic characteristics of VO2 coating[J]. Journal of Spacecraft and Rockets,2006,43(3):497-500
[91] VOTI R L,LARCIPRETE M C,LEAHU G,et al. Optimization of thermochromic VO2 based structures with tunable thermal emissivity[J]. Journal of Applied Physics,2012,112(3):1750-1466
[92] FENG Y D,WANG Z M,MA Y L,et al. Thin film design for advanced thermochromic smart radiator devices[J]. Chinese Physics,2007,16(6):1704-1709
[93] 闫璐,王孝,曹韫真,等. 基于二氧化钒的辐射率可调涂层设计[J]. 宇航材料工艺,2016,46(3):22-26
YAN L,WANG X,CAO Y Z,et al. Structure design of V02-based multilayer structure with tunable emittance[J]. Aerospace Materials and Technology,2016,46(3):22-26
[94] WANG X,CAO Y,ZHANG Y,et al. Fabrication of VO2-based multilayer structure with variable emittance[J]. Applied Surface Science,2015(344):230-235
[95] RATHI S,LEE I-Y,PARK J-H,et al. Postfabrication annealing effects on insulator-metal transitions in VO2 Thin-film devices[J]. ACS applied materials & interfaces,2014,6(22):19718-19725
[96] CASE F C. Modifications in the phase transition properties of predeposited VO2 films[J]. Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1984,2(4):1509-1512
[97] CHANG T,CAO X,DEDON L R,et al. Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings[J]. Nano Energy,2018(44):256-264
[98] FAN L,CHEN S,WU Y,et al. Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy[J]. Applied Physics Letters,2013,103(13):131914
[99] PAN M,ZHONG H,WANG S,et al. Properties of VO2 thin film prepared with precursor VO(ACAC)2[J]. Journal of Crystal Growth,2004,265(1-2):121-126
[100] GRAF D,SCHLÄFER J,GARBE S,et al. Interdependence of structure,morphology,and phase transitions in CVD grown VO2 and V2O3 nanostructures[J]. Chemistry of Materials,2017,29(14):5877-5885
[101] PARTLOW D,GURKOVICH S,RADFORD K,et al. Switchable vanadium oxide films by a sol‐gel process[J]. Journal of Applied Physics,1991,70(1):443-452
[102] DOU Y K,LI J B,CAO M S,et al. Oxidizing annealing effects on VO2 films with different microstructures[J]. Applied Surface Science,2015(345):232-237
[103] JEONG J,AETUKURI N,GRAF T,et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation[J]. Science,2013,339(6126):1402-1405
[104] NAKANO M,SHIBUYA K,OGAWA N,et al. Infrared-sensitive electrochromic device based on VO2[J]. Applied Physics Letters,2013,103(15):153503
[105] WU T-L,WHITTAKER L,BANERJEE S,et al. Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires[J]. Physical Review B,2011,83(7):073101
[106] ZHANG R,JIN H B,GUO D,et al. The role of Fe dopants in phase stability and electric switching properties of Fe-doped VO2[J]. Ceramics International,2016,42(16):18764-18770
[107] JIN P,NAKAO S,TANEMURA S. Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing[J]. Thin Solid Films,1998,324(1):151-158
[108] PAN G,YIN J,JI K,et al. Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method[J]. Scientific Reports,2017,7(1):6132
[109] MAI L,HU B,HU T,et al. Electrical property of mo-doped VO2 nanowire array film by melting-quenching sol-gel method[J]. The Journal of Physical Chemistry B,2006,110(39):19083-19086
[110] QUESADA-CABRERA R,POWELL M J,MARCHAND P,et al. Scalable production of thermochromic Nb-Doped VO2 nanomaterials using continuous hydrothermal flow synthesis[J]. Journal of Nanoscience and Nanotechnology,2016,16(9):10104-10111
[111] HE X,ZENG Y,XU X,et al. Orbital change manipulation metal-insulator transition temperature in W-doped VO2[J]. Physical Chemistry Chemical Physics,2015,17(17):11638-11646
[112] REN Q,WAN J,GAO Y. Theoretical study of electronic properties of X-Doped (X=F,Cl,Br,I) VO2 nanoparticles for thermochromic energy-saving foils[J]. The Journal of Physical Chemistry A,2014,118(46):11114-11118
[113] WAN J,REN Q,WU N,et al. Density functional theory study of M-doped (M=B,C,N,Mg,Al) VO2 nanoparticles for thermochromic energy-saving foils[J]. Journal of Alloys and Compounds,2016(662):621-627
PDF(1458 KB)

Accesses

Citations

Detail

Sections
Recommended

/