[1] 王大轶, 黄翔宇. 深空探测自主导航与控制技术综述[J]. 空间控制技术与应用, 2009, 35(3):6-12. WANG D Y, HUANG X Y.Survey of automous navigation and control for deep exploration[J]. Space Control Technology and Application, 2009, 35(3):6-12.
[2] 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018, 478(10):6-12. YE P J, ZHOU L Y, WANG D Y, et al.Development and prospect of Chinese deep space exploration[J]. International Space, 2018, 478(10):6-12.
[3] 王大轶, 屠园园, 刘成瑞, 等. 航天器控制系统可重构性的内涵与研究综述[J]. 自动化学报, 2017, 43(10):1687-1702. WANG D Y, TU Y Y, LIU C R,et al. Connotation and research of reconfigurability for spacecraft control systems:a review[J]. Acta Automatica Sinica, 2017,(10):1687-1702.
[4] XU H, WANG D, LIU C, et al. The study on reconfigurability condition of spacecraft control system[J]. Advances in Astronautics Science and Technology, 2018, 1(2):197-206.
[5] 屠园园, 王大轶, 李文博.考虑时间特性影响的控制系统可重构性定量评价方法研究[J]. 自动化学报, 2018, 44(7):1260-1270. TU Y Y, WANG D Y, LI W B. Quantitative reconfigurability evaluation for control systems in view of time properties[J]. Journal of Automation, 2018, 44(7):1260-1270.
[6] 王大轶, 符方舟, 刘成瑞, 等. 控制系统可诊断性的内涵与研究综述[J]. 自动化学报, 2018, 44(9):3-19. WANG D Y, FU F Z, LIU C R, et al. Connotation and research Status of diagnosability of control systems:a review[J]. Journal of automation, 2018, 44(9):3-19.
[7] MOORE B. Principal component analysis in linear systems:controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 1981, 26(1):17-32.
[8] GEHIN A L,HU H,BAYART M. A self-updating model for analysing system reconfigurability[J]. Engineering Applications of Artificial Intelligence, 2012, 25(1):20-30.
[9] GEHIN A L, STAROSWIECKI M. Reconfiguration analysis using generic component models[J].IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2008, 38(3):575-583.
[10] 张平, 陈宗基. 非线性飞控系统的控制可重构性[J]. 飞机设计, 2001(3):12-15. ZHANG P, CHEN Z J. Control reconfiguration of nonlinear flight control system[J]. Aircraft design, 2001(3):12-15.
[11] QI X, THEILLIOL D, QI J T, et al. Self-healing control against actuator stuck failures under constraints:application to unmanned helicopters[M]. Switzerland:Springer International Publishing, 2016.
[12] QI X, QI J T, THEILLIOL D, et al. Self-healing control design under actuator fault occurrence on single-rotor unmanned helicopters[J]. Journal of Intelligent & Robotic Systems, 2016, 84(1-4):21-35.
[13] 刘美师, 吴敬玉, 王文妍, 等. 一种基于SGCMG的欠驱动姿态控制方法[J]. 上海航天, 2018, 35(1):48-53. LIU M S, WU J Y, WANG W Y, et al. A method to control attitude of under-actuated satellite based on SGCMG[J]. Aerospace Shanghai, 2018, 35(1):48-53.
[14] LIU L, SHEN Y, DOWELL E H. Integrated adaptive fault-tolerant H∞ output feedback control with adaptive fault identification[J]. Journal of Guidance,Control,and Dynamics,2012,35(3):881-889.
[15] DOWELL E H, LIU L, SHEN Y. Adaptive fault-tolerant robust control for a linear system with adaptive fault identification[J]. IET Control Theory & Applications, 2013, 7(2):246-252.
[16] CASAVOLA A,RODRIGUES M,THEILLIOL D. Self-healing control architectures and design methodologies for linear parameter varying systems[J]. International Journal of Robust and Nonlinear Control, 2015, 25(5):625-626.
[17] ZHOU M, WANG Z, THEILLIOL D, et al. A self-healing control method for satellite attitude tracking based on simultaneous fault estimation and control design[C]//20163rd Conference on Control and Fault-Tolerant Systems(SysTol). Barcelona, Spain:IEEE, 2016.
[18] 樊雯, 程月华, 姜斌, 等. 卫星姿态控制系统的可重构性分析[J]. 宇航学报, 2014, 35(2):185-191. FAN W, CHENG Y H, JIANG B, et al. Reconfigurability analysis for satellite attitude control systems[J]. Journal of Aerospace, 2014, 35(2):185-191.
[19] 关守平, 杨飞生. 面向重构目标的控制系统可重构性[J]. 信息与控制, 2010, 39(4):391-396. GUAN S P, YANG F S. Reconfiguration-goal-oriented control system reconfigurability[J]. Information and Control, 2010, 39(4):391-396.
[20] WANG H, YANG G H. Simultaneous fault detection and control for uncertain linear discrete-time systems[J]. IET control Theory & Applications, 2009, 3(5):583-594.
[21] LIU W, CHEN Y, NI M. An linear matrix inequality approach to simultaneous fault detection and control design for LTI systems[C]//Proceedings of the 33rd Chinese Control Conference. Nanjing, China:IEEE, 2014.