Reconfigurability Evaluation and Autonomous Reconfigurable Strategy of Deep Space Probes

XU Heyu1, WANG Dayi2, LIU Chengrui1, LI Wenbo1, FU Fangzhou1, ZHANG Kebei1

PDF(1740 KB)
PDF(1740 KB)
Journal of Deep Space Exploration ›› 2019, Vol. 6 ›› Issue (4) : 376-383. DOI: 10.15982/j.issn.2095-7777.2019.04.010
Topic: Autonomous Control for Spacecraft

Reconfigurability Evaluation and Autonomous Reconfigurable Strategy of Deep Space Probes

  • XU Heyu1, WANG Dayi2, LIU Chengrui1, LI Wenbo1, FU Fangzhou1, ZHANG Kebei1
Author information +
History +

Abstract

In view of the severely limitation of resources (including computing resources, hardware resources and energy resources) and unmaintainable characteristics in the process of deep space exploration,the comprehensive evaluation method and autonomous reconfigurable strategy of deep space probes are studied. In this paper,the reconfigurability of the deep space probe control system is considered in the ground design stage, and the quantitative comprehensive evaluation index of the system reconfigurability is given.
The autonomous reconfigurable strategy is given based on the proposed evaluation index,which improves the operation of the control system of the deep space probe from the perspective of design and achieves the goal of autonomous fault handling and autonomous operation of deep space probes.

Keywords

deep space probes / reconfigurability evaluation methods / autonomous reconfigurable strategy

Cite this article

Download citation ▾
XU Heyu, WANG Dayi, LIU Chengrui, LI Wenbo, FU Fangzhou, ZHANG Kebei. Reconfigurability Evaluation and Autonomous Reconfigurable Strategy of Deep Space Probes. Journal of Deep Space Exploration, 2019, 6(4): 376‒383 https://doi.org/10.15982/j.issn.2095-7777.2019.04.010

References

[1] 王大轶, 黄翔宇. 深空探测自主导航与控制技术综述[J]. 空间控制技术与应用, 2009, 35(3):6-12. WANG D Y, HUANG X Y.Survey of automous navigation and control for deep exploration[J]. Space Control Technology and Application, 2009, 35(3):6-12.
[2] 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018, 478(10):6-12. YE P J, ZHOU L Y, WANG D Y, et al.Development and prospect of Chinese deep space exploration[J]. International Space, 2018, 478(10):6-12.
[3] 王大轶, 屠园园, 刘成瑞, 等. 航天器控制系统可重构性的内涵与研究综述[J]. 自动化学报, 2017, 43(10):1687-1702. WANG D Y, TU Y Y, LIU C R,et al. Connotation and research of reconfigurability for spacecraft control systems:a review[J]. Acta Automatica Sinica, 2017,(10):1687-1702.
[4] XU H, WANG D, LIU C, et al. The study on reconfigurability condition of spacecraft control system[J]. Advances in Astronautics Science and Technology, 2018, 1(2):197-206.
[5] 屠园园, 王大轶, 李文博.考虑时间特性影响的控制系统可重构性定量评价方法研究[J]. 自动化学报, 2018, 44(7):1260-1270. TU Y Y, WANG D Y, LI W B. Quantitative reconfigurability evaluation for control systems in view of time properties[J]. Journal of Automation, 2018, 44(7):1260-1270.
[6] 王大轶, 符方舟, 刘成瑞, 等. 控制系统可诊断性的内涵与研究综述[J]. 自动化学报, 2018, 44(9):3-19. WANG D Y, FU F Z, LIU C R, et al. Connotation and research Status of diagnosability of control systems:a review[J]. Journal of automation, 2018, 44(9):3-19.
[7] MOORE B. Principal component analysis in linear systems:controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 1981, 26(1):17-32.
[8] GEHIN A L,HU H,BAYART M. A self-updating model for analysing system reconfigurability[J]. Engineering Applications of Artificial Intelligence, 2012, 25(1):20-30.
[9] GEHIN A L, STAROSWIECKI M. Reconfiguration analysis using generic component models[J].IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2008, 38(3):575-583.
[10] 张平, 陈宗基. 非线性飞控系统的控制可重构性[J]. 飞机设计, 2001(3):12-15. ZHANG P, CHEN Z J. Control reconfiguration of nonlinear flight control system[J]. Aircraft design, 2001(3):12-15.
[11] QI X, THEILLIOL D, QI J T, et al. Self-healing control against actuator stuck failures under constraints:application to unmanned helicopters[M]. Switzerland:Springer International Publishing, 2016.
[12] QI X, QI J T, THEILLIOL D, et al. Self-healing control design under actuator fault occurrence on single-rotor unmanned helicopters[J]. Journal of Intelligent & Robotic Systems, 2016, 84(1-4):21-35.
[13] 刘美师, 吴敬玉, 王文妍, 等. 一种基于SGCMG的欠驱动姿态控制方法[J]. 上海航天, 2018, 35(1):48-53. LIU M S, WU J Y, WANG W Y, et al. A method to control attitude of under-actuated satellite based on SGCMG[J]. Aerospace Shanghai, 2018, 35(1):48-53.
[14] LIU L, SHEN Y, DOWELL E H. Integrated adaptive fault-tolerant H output feedback control with adaptive fault identification[J]. Journal of Guidance,Control,and Dynamics,2012,35(3):881-889.
[15] DOWELL E H, LIU L, SHEN Y. Adaptive fault-tolerant robust control for a linear system with adaptive fault identification[J]. IET Control Theory & Applications, 2013, 7(2):246-252.
[16] CASAVOLA A,RODRIGUES M,THEILLIOL D. Self-healing control architectures and design methodologies for linear parameter varying systems[J]. International Journal of Robust and Nonlinear Control, 2015, 25(5):625-626.
[17] ZHOU M, WANG Z, THEILLIOL D, et al. A self-healing control method for satellite attitude tracking based on simultaneous fault estimation and control design[C]//20163rd Conference on Control and Fault-Tolerant Systems(SysTol). Barcelona, Spain:IEEE, 2016.
[18] 樊雯, 程月华, 姜斌, 等. 卫星姿态控制系统的可重构性分析[J]. 宇航学报, 2014, 35(2):185-191. FAN W, CHENG Y H, JIANG B, et al. Reconfigurability analysis for satellite attitude control systems[J]. Journal of Aerospace, 2014, 35(2):185-191.
[19] 关守平, 杨飞生. 面向重构目标的控制系统可重构性[J]. 信息与控制, 2010, 39(4):391-396. GUAN S P, YANG F S. Reconfiguration-goal-oriented control system reconfigurability[J]. Information and Control, 2010, 39(4):391-396.
[20] WANG H, YANG G H. Simultaneous fault detection and control for uncertain linear discrete-time systems[J]. IET control Theory & Applications, 2009, 3(5):583-594.
[21] LIU W, CHEN Y, NI M. An linear matrix inequality approach to simultaneous fault detection and control design for LTI systems[C]//Proceedings of the 33rd Chinese Control Conference. Nanjing, China:IEEE, 2014.
PDF(1740 KB)

Accesses

Citations

Detail

Sections
Recommended

/