[1] 叶斌龙,赵健楠,黄俊. 美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考[J]. 深空探测学报,2017,4(4):310-324
YE B L,ZHAO J N,HUANG J. The status of NASA Mars 2020 rover landing site selection and some thoughts on the landing part of China 2020 Mars mission[J]. Journal of Deep Space Exploration,2017,4(4):310-324
[2] 徐青,耿迅,蓝朝桢,等. 火星地形测绘研究综述[J]. 深空探测学报,2014,1(1):28-35
XU Q,GENG X,LAN C Z,et al. Review of Mars topographic mapping[J]. Journal of Deep Space Exploration,2014,1(1):28-35
[3] 董捷,王闯,赵洋. 基于工程约束的火星着陆区选择[J]. 深空探测学报,2016,3(2):134-139
DONG J,WANG C,ZHAO Y. Selection of the Martian landing site based on the engineering constraints[J]. Journal of Deep Space Exploration,2016,3(2):134-139
[4] YE P J,SUN Z Z,RAO W,et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China(Technological Sciences),2017(5):5-13
[5] PUTZIG N E,MELLON M T. Apparent thermal inertia and the surface heterogeneity of Mars[J]. Icarus,2007,191(1):68-94
[6] CHRISTENSEN P R,BANDFIELD J L,HAMILTON V E,et al. Mars global surveyor thermal emission spectrometer experiment:Investigation description and surface science results[J]. Journal of Geophysical Research Planets,2001,106(E10):23823-23871
[7] 刘学军,龚健雅,周启鸣,等. 基于DEM坡度坡向算法精度的分析研究[J]. 测绘学报,2004,33(3):258-263
LIU X J,GONG J Y,ZHOU Q M,et al. A study of accuracy and algorithms for calculating slope and aspect based on grid Digital Elevation Model(DEM)[J]. Acta Geodaetica et Cartographica Sinica,2004,33(3):258-263
[8] 江冲亚,方红亮,魏珊珊. 地表粗糙度参数化研究综述[J]. 地球科学进展,2012,27(3):292-303
JIANG C Y,FANG H L,WEI S S. Review of land surface roughness parameterizations study[J]. Advances in Earth Science,2012,27(3):292-303
[9] SHEPARD M K,CAMPBELL B A,BULMER M H,et al. The roughness of natural terrain:a planetary and remote sensing perspective[J]. Journal of Geophysical Research,2001,106(E12):32777-32795
[10] RUFF S W,CHRISTENSEN P R. Bright and dark regions on Mars:particle size and mineralogical characteristics based on thermal emission spectrometer data[J]. Journal of Geophysical Research,2002,107(E12):5127
[11] KIEFFER H H,MARTIN T Z,PETERFREUND A R,et al. Thermal and albedo mapping of Mars during the Viking primary mission[J]. Journal of Geophysical Research,1977,82(28):4249-4291
[12] 史建魁,刘振兴,程征伟. 火星探测研究结果分析[J]. 科技导报,2011,29(10):64-70
SHI J K,LIU Z X,CHENG Z W. An analysis of results of the Mars exploration[J]. Science & Technology Review,2011,29(10):64-70
[13] GOLOMBEK M,GRANT J,KIPP D,et al. Selection of the Mars Science Laboratory landing site[J]. Space Science Reviews,2012,170(1-4):641-737
[14] MELLON M T,FERGASON R L,PUTZIG N E. The martian surface:the thermal inertia of the surface of Mars[J]. The Martian Surface - Composition,Mineralogy,and Physical Properties,2008(1):399-427.
[15] CHRISTENSEN P R,MOORE H J. The martian surface layer[J]. Mars,1992,44:686-729
[16] PUTZIG N E,MELLON M T,KRETKE K A,et al. Global thermal inertia and surface properties of Mars from the MGS mapping mission[J]. Icarus,2005,173(2):325-341
[17] 芶盛,岳宗玉,邸凯昌,等. 火星表面含水矿物探测进展[J]. 遥感学报,2017,21(4):531-548
GOU S,YUE Z Y,DI K C,et al. Advances in aqueous minerals detection on Martian surface[J]. Journal of Remote Sensing,2017,21(4):531-548
[18] CARTER J,POULET F,BIBRING J P,et al. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers:updated global view[J]. Journal of Geophysical Research Planets,2013,118(4):831-858
[19] EHLMANN B L,MUSTARD J F,MURCHIE S L,et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature,2011,479(7371):53-60
[20] BIBRING J P,LANGEVIN Y,MUSTARD J F,et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars express data[J]. Science,2006,312(5772):400-404
[21] CARR M H. The surface of Mars[M]. Cambridge:Cambridge University Press,2006.
[22] JAKOSKY B M,PHILLIPS R J. Mars’ volatile and climate history[J]. nature,2001,412(6843):237-244
[23] BARLOW N G,BOYCE J M,COSTARD F M,et al. Standardizing the nomenclature of martian impact crater ejecta morphologies[J]. Journal of Geophysical Research,2000,105(E11):26733
[24] CARR M H,CRUMPLER L S,CUTTS J A,et al. Martian impact craters and emplacement of ejecta by surface flow[J]. Journal of Geophysical Research,1977,82(28):4055-4065
[25] STEWART S T,O'KEEFE J D,AHRENS T J. The relationship between rampart crater morphologies and the amount of subsurface ice[C]// Lunar & Planetary Science Conference. [S. l.]:Lunar and Planetary Science Conference,2001.
[26] SCHULTZ P H. Atmospheric effects on ejecta emplacement[J]. Journal of Geophysical Research,1992,97(E7):11623
[27] BARNOUIN-JHA O S,SCHULTZ P H,LEVER J H. Investigating the interactions between an atmosphere and an ejecta curtain:1. wind tunnel tests[J]. Journal of Geophysical Research,1999,104(E11):27105
[28] BARNOUIN-JHA O S,SCHULTZ P H,LEVER J H. Investigating the interactions between an atmosphere and an ejecta curtain:2. numerical experiments[J]. Journal of Geophysical Research,1999,104(E11):27117
[29] RODRíGUEZ J A P,TANAKA K L,KARGEL J S,et al. Formation and disruption of aquifers in southwestern Chryse Planitia,Mars[J]. Icarus,2007,191(2):545-567
[30] KOMATSU G,OKUBO C H,WRAY J J,et al. Small edifice features in Chryse Planitia,Mars:assessment of a mud volcano hypothesis[J]. Icarus,2016,268:56-75
[31] GHENT R R,ANDERSON S W,PITHAWALA T M. The formation of small cones in Isidis Planitia,Mars through mobilization of pyroclastic surge deposits[J]. Icarus,2012,217(1):169-183
[32] EHLMANN B L,MUSTARD J F,FASSETT C I,et al. Clay minerals in delta deposits and organic preserva-tion potential on Mars[J]. Nature Geoscience,2008,1(6):355-358
[33] ERKELING G,REISS D,HIESINGER H,et al. Landscape formation at the Deuteronilus contact in southern Isidis Planitia,Mars:implications for an Isidis Sea?[J]. Icarus,2014,242:329-351
[34] DE PABLO M á,PACIFICI A. Geomorphological evidence of water level changes in Nepenthes Mensae,Mars[J]. Icarus,2008,196(2):667-671
[35] WERNER S C,TANAKA K L,SKINNER J A. Mars:the evolutionary history of the northern lowlands based on crater counting and geologic mapping[J]. Planetary & Space Science,2011,59(11-12):1143-1165