Analysis and Selection of Landing Areas for Mars Mission

WANG Yue1,2, WANG Biao1,2, WANG Xun1,2, PAN Chenan1,2, YAO Peiwen1,2, LI Chenfan1,2, LI Bo1,2

PDF(1974 KB)
PDF(1974 KB)
Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (4) : 371-383. DOI: 10.15982/j.issn.2095-7777.2020.20190708001
Article
Article

Analysis and Selection of Landing Areas for Mars Mission

  • WANG Yue1,2, WANG Biao1,2, WANG Xun1,2, PAN Chenan1,2, YAO Peiwen1,2, LI Chenfan1,2, LI Bo1,2
Author information +
History +

Abstract

In this paper,based on the(Digital Elevation Model)data,remote sensing imagery and geological units,the priority landing areas were selected by combining the engineering constraints(terrain factors,ground bearing capacity,elevation and latitude)and scientific significance,and geological background of these priority landing areas was studied. Firstly,terrain factors(including slope and roughness)of the tentative sub-area were extracted derived from DEM data. And the areas meeting engineering constraints,which have lower slope(< 7.38°),roughness value(< 0.0096),stronger ground bearing capacity,elevation(< –2 km)and latitude(0~30°N),were selected. Then,based on the two research focuses of life and geology,the areas containing the scientific significance were chosen as the priority landing areas(a~h). Among them,a and b priority landing areas are located in the Chryse Planitia,c~g priority landing areas are located in the Isidis Planitia and h priority landing area is located in the Nepenthes Planum. Finally,the geological backgrounds of the eight areas were studied,and three priority landing areas(e~g)were considered as the highest priority landing areas because of their flat terrain,location at the boundary of two geological units and detection of the distribution of hydrous minerals.

Keywords

Mars exploration mission / landing areas selection / engineering constraints / geological background / hydrous mineral

Cite this article

Download citation ▾
WANG Yue, WANG Biao, WANG Xun, PAN Chenan, YAO Peiwen, LI Chenfan, LI Bo. Analysis and Selection of Landing Areas for Mars Mission. Journal of Deep Space Exploration, 2020, 7(4): 371‒383 https://doi.org/10.15982/j.issn.2095-7777.2020.20190708001

References

[1] 叶斌龙,赵健楠,黄俊. 美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考[J]. 深空探测学报,2017,4(4):310-324
YE B L,ZHAO J N,HUANG J. The status of NASA Mars 2020 rover landing site selection and some thoughts on the landing part of China 2020 Mars mission[J]. Journal of Deep Space Exploration,2017,4(4):310-324
[2] 徐青,耿迅,蓝朝桢,等. 火星地形测绘研究综述[J]. 深空探测学报,2014,1(1):28-35
XU Q,GENG X,LAN C Z,et al. Review of Mars topographic mapping[J]. Journal of Deep Space Exploration,2014,1(1):28-35
[3] 董捷,王闯,赵洋. 基于工程约束的火星着陆区选择[J]. 深空探测学报,2016,3(2):134-139
DONG J,WANG C,ZHAO Y. Selection of the Martian landing site based on the engineering constraints[J]. Journal of Deep Space Exploration,2016,3(2):134-139
[4] YE P J,SUN Z Z,RAO W,et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China(Technological Sciences),2017(5):5-13
[5] PUTZIG N E,MELLON M T. Apparent thermal inertia and the surface heterogeneity of Mars[J]. Icarus,2007,191(1):68-94
[6] CHRISTENSEN P R,BANDFIELD J L,HAMILTON V E,et al. Mars global surveyor thermal emission spectrometer experiment:Investigation description and surface science results[J]. Journal of Geophysical Research Planets,2001,106(E10):23823-23871
[7] 刘学军,龚健雅,周启鸣,等. 基于DEM坡度坡向算法精度的分析研究[J]. 测绘学报,2004,33(3):258-263
LIU X J,GONG J Y,ZHOU Q M,et al. A study of accuracy and algorithms for calculating slope and aspect based on grid Digital Elevation Model(DEM)[J]. Acta Geodaetica et Cartographica Sinica,2004,33(3):258-263
[8] 江冲亚,方红亮,魏珊珊. 地表粗糙度参数化研究综述[J]. 地球科学进展,2012,27(3):292-303
JIANG C Y,FANG H L,WEI S S. Review of land surface roughness parameterizations study[J]. Advances in Earth Science,2012,27(3):292-303
[9] SHEPARD M K,CAMPBELL B A,BULMER M H,et al. The roughness of natural terrain:a planetary and remote sensing perspective[J]. Journal of Geophysical Research,2001,106(E12):32777-32795
[10] RUFF S W,CHRISTENSEN P R. Bright and dark regions on Mars:particle size and mineralogical characteristics based on thermal emission spectrometer data[J]. Journal of Geophysical Research,2002,107(E12):5127
[11] KIEFFER H H,MARTIN T Z,PETERFREUND A R,et al. Thermal and albedo mapping of Mars during the Viking primary mission[J]. Journal of Geophysical Research,1977,82(28):4249-4291
[12] 史建魁,刘振兴,程征伟. 火星探测研究结果分析[J]. 科技导报,2011,29(10):64-70
SHI J K,LIU Z X,CHENG Z W. An analysis of results of the Mars exploration[J]. Science & Technology Review,2011,29(10):64-70
[13] GOLOMBEK M,GRANT J,KIPP D,et al. Selection of the Mars Science Laboratory landing site[J]. Space Science Reviews,2012,170(1-4):641-737
[14] MELLON M T,FERGASON R L,PUTZIG N E. The martian surface:the thermal inertia of the surface of Mars[J]. The Martian Surface - Composition,Mineralogy,and Physical Properties,2008(1):399-427.
[15] CHRISTENSEN P R,MOORE H J. The martian surface layer[J]. Mars,1992,44:686-729
[16] PUTZIG N E,MELLON M T,KRETKE K A,et al. Global thermal inertia and surface properties of Mars from the MGS mapping mission[J]. Icarus,2005,173(2):325-341
[17] 芶盛,岳宗玉,邸凯昌,等. 火星表面含水矿物探测进展[J]. 遥感学报,2017,21(4):531-548
GOU S,YUE Z Y,DI K C,et al. Advances in aqueous minerals detection on Martian surface[J]. Journal of Remote Sensing,2017,21(4):531-548
[18] CARTER J,POULET F,BIBRING J P,et al. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers:updated global view[J]. Journal of Geophysical Research Planets,2013,118(4):831-858
[19] EHLMANN B L,MUSTARD J F,MURCHIE S L,et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature,2011,479(7371):53-60
[20] BIBRING J P,LANGEVIN Y,MUSTARD J F,et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars express data[J]. Science,2006,312(5772):400-404
[21] CARR M H. The surface of Mars[M]. Cambridge:Cambridge University Press,2006.
[22] JAKOSKY B M,PHILLIPS R J. Mars’ volatile and climate history[J]. nature,2001,412(6843):237-244
[23] BARLOW N G,BOYCE J M,COSTARD F M,et al. Standardizing the nomenclature of martian impact crater ejecta morphologies[J]. Journal of Geophysical Research,2000,105(E11):26733
[24] CARR M H,CRUMPLER L S,CUTTS J A,et al. Martian impact craters and emplacement of ejecta by surface flow[J]. Journal of Geophysical Research,1977,82(28):4055-4065
[25] STEWART S T,O'KEEFE J D,AHRENS T J. The relationship between rampart crater morphologies and the amount of subsurface ice[C]// Lunar & Planetary Science Conference. [S. l.]:Lunar and Planetary Science Conference,2001.
[26] SCHULTZ P H. Atmospheric effects on ejecta emplacement[J]. Journal of Geophysical Research,1992,97(E7):11623
[27] BARNOUIN-JHA O S,SCHULTZ P H,LEVER J H. Investigating the interactions between an atmosphere and an ejecta curtain:1. wind tunnel tests[J]. Journal of Geophysical Research,1999,104(E11):27105
[28] BARNOUIN-JHA O S,SCHULTZ P H,LEVER J H. Investigating the interactions between an atmosphere and an ejecta curtain:2. numerical experiments[J]. Journal of Geophysical Research,1999,104(E11):27117
[29] RODRíGUEZ J A P,TANAKA K L,KARGEL J S,et al. Formation and disruption of aquifers in southwestern Chryse Planitia,Mars[J]. Icarus,2007,191(2):545-567
[30] KOMATSU G,OKUBO C H,WRAY J J,et al. Small edifice features in Chryse Planitia,Mars:assessment of a mud volcano hypothesis[J]. Icarus,2016,268:56-75
[31] GHENT R R,ANDERSON S W,PITHAWALA T M. The formation of small cones in Isidis Planitia,Mars through mobilization of pyroclastic surge deposits[J]. Icarus,2012,217(1):169-183
[32] EHLMANN B L,MUSTARD J F,FASSETT C I,et al. Clay minerals in delta deposits and organic preserva-tion potential on Mars[J]. Nature Geoscience,2008,1(6):355-358
[33] ERKELING G,REISS D,HIESINGER H,et al. Landscape formation at the Deuteronilus contact in southern Isidis Planitia,Mars:implications for an Isidis Sea?[J]. Icarus,2014,242:329-351
[34] DE PABLO M á,PACIFICI A. Geomorphological evidence of water level changes in Nepenthes Mensae,Mars[J]. Icarus,2008,196(2):667-671
[35] WERNER S C,TANAKA K L,SKINNER J A. Mars:the evolutionary history of the northern lowlands based on crater counting and geologic mapping[J]. Planetary & Space Science,2011,59(11-12):1143-1165
PDF(1974 KB)

Accesses

Citations

Detail

Sections
Recommended

/