Topic:Mars Patrol Exploration Technology

Research Progress of Non-geometric Hazard Perception for Unmanned Planetary Rover

Expand
  • 1. Institute of Spacecraft System Engineering,Beijing 100094,China;
    2. School of Mechanical Engineering and Automation,Jilin University,Changchun 130025,China

Received date: 15 Jun 2020

Revised date: 06 Aug 2020

Abstract

Improving the environment perception ability is a prerequisite for improving the intelligence and autonomy of the rover. Non-geometric hazard perception is the key part of autonomous navigation. Reviewing the development of the non-geometric hazard perception of the rover,it shows that the key aspects of the non-geometric hazard perception are hazard estimation and hazard prediction. Non-geometric hazard estimation and prediction include wheel-soil model,wheel sinkage estimation,slip ratio estimation,identification of soil parameters and terrain classification,and the relevant research on theses aspects are introduced and analyzed. The future research on non-geometric hazard perception should focus on the optimization of wheel-soil interaction mechanics model,multi-source information fusion and the application of artificial intelligence technology. Finally,a slip ratio prediction method based on soil parameter identification is described.

Cite this article

ZHANG Tianyi, PENG Song, TIAN He . Research Progress of Non-geometric Hazard Perception for Unmanned Planetary Rover[J]. Journal of Deep Space Exploration, 2020 , 7(5) : 428 -436 . DOI: 10.15982/j.issn.2096-9287.2020.20200034

References

[1] 叶培建,黄江川,孙泽洲,等. 中国月球探测器发展历程和经验初探[J]. 中国科学:技术科学,2014,44(6):543-558
YE P J,HUANG J C,SUN Z Z,et al. A the development history and experience of Chinese lunar explorer[J]. Scientia Sinica Technologica,2014,44(6):543-558
[2] 邢琰,滕宝毅,刘祥,等. 月球表面巡视探测GNC技术[J]. 空间科学学报,2016,36(2):196-201
XING Y,TENG B Y,LIU X,et al. Guidance,navigation and control technology for lunar surface exploration[J]. Chinese Journal of Space Science,2016,36(2):196-201
[3] 刘冰. 月面地形识别与力学参数估计技术研究[D]. 北京:北京工业大学,2008.
LIU B. Research on terrain identification and mechanical parameters estimation of lunar soil[D]. Beijing:Beijing University of Technology,2008.
[4] 李静文. 月面巡视区域地形与巡视器通过性统计分析[J]. 中国科学:技术科学,2015,45(7):773-778
LI J W. Statistic analysis of exploration area topography and rover trafficability[J]. Scientia Sinica:Technologica,2015,45(7):773-778
[5] WILCOX B H. Non-geometric hazard detection for a Mars microrover[C]//Conference on Intelligent Robotics in Field,Factory,Service,and Space. Washington,DC:[s. n.],1994.
[6] GONZALEZ R,APOSTOLOPOILOS D,IAGNEMMA K. Slippage and immobilization detection for planetary exploration rovers via machine learning and proprioceptive sensing[J]. Journal of Field Robotics,2018,35(2):231-47
[7] 陈百超,邹猛,党兆龙,等. CE-3月球车筛网轮月面沉陷行为试验[J]. 吉林大学学报(工学版),2019,49(6):1836-1843
CHEN B C,ZOU M,DANG Z L,et al. Experiment on pressure-sinkage for mesh wheels of CE-3 lunar rover on lunar regolith[J]. Journal of Jilin University (Engineering and Technology Edition),2019,49(6):1836-1843
[8] IEGNEMMA K,BROOKS C,DUBOWSKY S. Visual,tactile,and vibration-based terrain analysis for planetary rovers[C]//IEEE Aerospace Conference. [S. l.]:IEEE,2004.
[9] REINA G,OJEDA L,MILELLA A,et al. Wheel slippage and sinkage detection for planetary rovers[J]. IEEE/ASME Transactions on Mechatronics,2006,11(2):185-195
[10] REINA G,MILELLA A,PANELLA F W. Vision-based wheel sinkage estimation for rough-terrain mobile robots[C]//15th International Conference on Mechatronics and Machine Vision in Practice. Auckland:[s. n.],2008.
[11] HEGDE G P,ROBINSON C J,YE C,et al. Computer vision based wheel sinkage detection for robotic lunar exploration tasks[C]//IEEE International Conference on Mechatronics and Automation. Xi’an:IEEE,2010.
[12] HEGDE G M,CANG Y,ROBINSON C A,et al. Computer-vision-based wheel sinkage estimation for robot navigation on lunar terrain[J]. IEEE/ASME Transactions on Mechatronics,2013(4):1346-1356
[13] GAO H B,LV F T,YUAN B F,et al. Sinkage definition and visual detection for planetary rovers wheels on rough terrain based on wheel-soil interaction boundary[J]. Robotics and Autonomous Systems,2017,98:222-240
[14] NISTER D,NARODITSKY O,BERGEN J. Visual odometry[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Princeton,USA:IEEE,2004.
[15] MAIMONE M,CHENG Y,MATTHIES L. Two years of visual odometry on the Mars exploration rovers[J]. Journal of Field Robotics,2007,24(3):169-186
[16] GONZALEZ R,RODRIGUEZ F,GUZMN J L,et al. Combined visual odometry and visual compass for off-road mobile robots localization[J]. Robotica,2012,30(6):865-878
[17] DING L,GAO H B,FENG Z Q,et al. Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformance soil[J]. Journal of Terramechanics,2011,48:27-45
[18] LI N,DING L,GAO H B,et al. Detection method for planet rover slip ratio based on vision measuring technology[C]//The 35th Chinese Control Conference. Xi’an,China:[s. n.],2013.
[19] 李楠,高海波,吕凤天,等. 车辙图像频域分析及星球车车轮滑转率估计方法[J]. 宇航学报,2016,37(11):1356-1364
LI N,GAO H B,LV F T,et al. Wheel trace imprint image frequency domain analysis and rover wheel slip ratio estimation[J]. Journal of Astronautics,2016,37(11):1356-1364
[20] 吕凤天,高海波,李楠,等. 基于单目视觉的松软地面星球车车轮滑转率估计[J]. 机械工程学报,2019,56(2):77-85
LYU F T,GAO H B,Li N,et al. Monocular vision-based estimation of wheel slip ratio for planetary rovers in soft terrain[J]. Journal of Mechanical Engineering,2019,56(2):77-85
[21] GONZALEZ R,CHANDLER S,APOSTOLOPOULOS D. Characterization of machine learning algorithms for slippage estimation in planetary exploration rovers[J]. Journal of Terramechanics,2019,82:23-34
[22] GONZALEZ R,LAGNEMMA K. Slippage estimation and compensation for planetary exploration rovers. State of the art and future challenges[J]. Journal of Field Robotics,2019,35(4):564-577
[23] ROTHROCK B,KENNEDY R,CUNNINGHAM C,et al. Spoc:deep learning-based terrain classification for Mars rover missions[C]//Space Conference and Exposition. Long Beach,California: [s. n.]: 2016.
[24] 孙晶. 软地面轮?土作用力学参数在线识别[D]. 上海:上海大学,2015.
SUN J. On-line deformable terrain parameter identification based on wheel-terrain interaction mechanics[D]. Shanghai:Shanghai University,2015.
[25] MOORE H J,HUTTON R E,SCOTT R F,et al. Surface materials of the viking landing sites[J]. Journal of Geophysical Research,1977,82(28):4497-4523
[26] CRISP J,MATIJEVIC J R. Characterization of the martian surface deposits by the Mars Pathfinder Rover,Sojourner[J]. Science,1997,278(5344):1765-1768
[27] LI M,GAO F,SUN P,et al. The algorithm research of terrain parameter estimation based on lunar rover's traveling information[C]//International Conference on Optoelectronics and Image Processing. Haikou:[s. n.],2010.
[28] LIU Z,GUO J,DING L,et al. Online estimation of terrain parameters and resistance force based on equivalent sinkage for planetary rovers in longitudinal skid[J]. Mechanical Systems and Signal Processing,2019,119(15):39-54
[29] IAGNEMMA K,KANG S,SHIBLY H,et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers[J]. IEEE Transactions on Robotics,2004,20(5):921-927
[30] IGNEMMA K,SHIBLY H,DUBOWSKY S. On-line terrain parameter estimation for planetary rovers[C]//IEEE International Conference on Robotics and Automation. [S. l.]:IEEE,2002.
[31] 崔平远,刘冰,居鹤华. 月壤力学参数在线估计算法研究[J]. 计算机测量与控制,2008,16(2):245-269
CUI P Y,LIU B,JU H H. Research on mechanical parameters online estimation of lunar soil[J]. Computer Measurement & Control,2008,16(2):245-269
[32] HUTANGKABODEE S,ZWEIRI Y H,SENEVIRATNE L D,et al. Performance prediction of a wheeled vehicle on unknown terrain using identified soil parameters[C]//IEEE International Conference on Robotics and Automation. [S. l.]:IEEE,2006.
[33] CROSS M,ELLERY A,QADI A. Estimating terrain parameters for a rigid wheeled rover using neural networks[J]. Journal of Terramechanics,2013,50(3):165-174
[34] 丁亮. 月/星球车轮地作用地面力学模型及其应用研究[D]. 哈尔滨:哈尔滨工业大学,2009.
Ding L. Wheel-soil interaction terramechanics for lunar/planetary exploration rovers:modeling and application[D]. Harbin:Harbin Institute of Technology,2009.
[35] HOWARD A,SERAJI H. Vision-based terraincharacterization and traversability assessment[J]. Journal of Robotics System,2001,18(10):577-587
[36] CHHANIYARA S,BRUNSKILL C,YEOMANS B,et al. Terrain trafficability analysis and soil mechanical property identification for planetary rovers:a survey[J]. Journal of Terramechanics,2012,49(2):115-128
[37] HEVERLY M,MATTHEWS J,LIN J,et al. Traverse performance characterization for the Mars Science Laboratory Rover[J]. Journal of Field Robotics,2013,30(6):835-846
[38] CUNNINGHAM C,ONO M,NESNAS I,et al. Locally-adaptive slip prediction for planetary rovers using Gaussian processes[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). [S. l.]:IEEE,2017.
[39] SADHUKHAN D AND MOORE C. Online terrain estimation using internal sensors[C]//Proceedings of the Florida Conference on Recent Advances in Robotics. Boca Raton,USA:[s. n.],2013.
[40] WEISS C,FECHNER N,STARK M,et al. Comparison of different approaches to vibration-based terrain classification[C]//European Conference on Mobile Robotics. Freiburg,Germany:[s. n.],2007.
[41] BROOKS C A,IAGNEMMA K. Self-supervised terrain classification for planetary surface exploration rovers[J]. Journal of Field Robotics,2012,29(3):445-468
[42] 叶培建,孟林智,马继楠,等. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报(中英文),2019,6(4):303-316.
YE P J,MENG L Z,MA J N,et al. Suggestions on artificial intelligence technology application and development in deep space exploration[J]. 2019,6(4):303-316.
[43] 郭延宁,冯振,马广富,等. 行星车视觉导航与自主控制进展与展望[J]. 宇航学报,2018,39(11):1185-1196
GUO Y N,FENG Z,MA G F,et al. Advances and trends in visual navigation and autonomous control of a planetary rover[J]. Journal of Astronautics,2018,39(11):1185-1196
[44] 刘付成. 人工智能在航天器控制中的应用[J]. 飞控与探测,2018,1(1):16-25
LIU F C. Application of artificial intelligence in spacecraft[J]. Flight Control & Detection,2018,1(1):16-25
Outlines

/