Research Progress of Non-geometric Hazard Perception for Unmanned Planetary Rover

ZHANG Tianyi1,2, PENG Song1, TIAN He1,2

PDF(799 KB)
PDF(799 KB)
Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (5) : 428-436. DOI: 10.15982/j.issn.2096-9287.2020.20200034
Topic:Mars Patrol Exploration Technology

Research Progress of Non-geometric Hazard Perception for Unmanned Planetary Rover

  • ZHANG Tianyi1,2, PENG Song1, TIAN He1,2
Author information +
History +

Abstract

Improving the environment perception ability is a prerequisite for improving the intelligence and autonomy of the rover. Non-geometric hazard perception is the key part of autonomous navigation. Reviewing the development of the non-geometric hazard perception of the rover,it shows that the key aspects of the non-geometric hazard perception are hazard estimation and hazard prediction. Non-geometric hazard estimation and prediction include wheel-soil model,wheel sinkage estimation,slip ratio estimation,identification of soil parameters and terrain classification,and the relevant research on theses aspects are introduced and analyzed. The future research on non-geometric hazard perception should focus on the optimization of wheel-soil interaction mechanics model,multi-source information fusion and the application of artificial intelligence technology. Finally,a slip ratio prediction method based on soil parameter identification is described.

Keywords

planetary rover / environment perception / non-geometric hazard / slip prediction

Cite this article

Download citation ▾
ZHANG Tianyi, PENG Song, TIAN He. Research Progress of Non-geometric Hazard Perception for Unmanned Planetary Rover. Journal of Deep Space Exploration, 2020, 7(5): 428‒436 https://doi.org/10.15982/j.issn.2096-9287.2020.20200034

References

[1] 叶培建,黄江川,孙泽洲,等. 中国月球探测器发展历程和经验初探[J]. 中国科学:技术科学,2014,44(6):543-558
YE P J,HUANG J C,SUN Z Z,et al. A the development history and experience of Chinese lunar explorer[J]. Scientia Sinica Technologica,2014,44(6):543-558
[2] 邢琰,滕宝毅,刘祥,等. 月球表面巡视探测GNC技术[J]. 空间科学学报,2016,36(2):196-201
XING Y,TENG B Y,LIU X,et al. Guidance,navigation and control technology for lunar surface exploration[J]. Chinese Journal of Space Science,2016,36(2):196-201
[3] 刘冰. 月面地形识别与力学参数估计技术研究[D]. 北京:北京工业大学,2008.
LIU B. Research on terrain identification and mechanical parameters estimation of lunar soil[D]. Beijing:Beijing University of Technology,2008.
[4] 李静文. 月面巡视区域地形与巡视器通过性统计分析[J]. 中国科学:技术科学,2015,45(7):773-778
LI J W. Statistic analysis of exploration area topography and rover trafficability[J]. Scientia Sinica:Technologica,2015,45(7):773-778
[5] WILCOX B H. Non-geometric hazard detection for a Mars microrover[C]//Conference on Intelligent Robotics in Field,Factory,Service,and Space. Washington,DC:[s. n.],1994.
[6] GONZALEZ R,APOSTOLOPOILOS D,IAGNEMMA K. Slippage and immobilization detection for planetary exploration rovers via machine learning and proprioceptive sensing[J]. Journal of Field Robotics,2018,35(2):231-47
[7] 陈百超,邹猛,党兆龙,等. CE-3月球车筛网轮月面沉陷行为试验[J]. 吉林大学学报(工学版),2019,49(6):1836-1843
CHEN B C,ZOU M,DANG Z L,et al. Experiment on pressure-sinkage for mesh wheels of CE-3 lunar rover on lunar regolith[J]. Journal of Jilin University (Engineering and Technology Edition),2019,49(6):1836-1843
[8] IEGNEMMA K,BROOKS C,DUBOWSKY S. Visual,tactile,and vibration-based terrain analysis for planetary rovers[C]//IEEE Aerospace Conference. [S. l.]:IEEE,2004.
[9] REINA G,OJEDA L,MILELLA A,et al. Wheel slippage and sinkage detection for planetary rovers[J]. IEEE/ASME Transactions on Mechatronics,2006,11(2):185-195
[10] REINA G,MILELLA A,PANELLA F W. Vision-based wheel sinkage estimation for rough-terrain mobile robots[C]//15th International Conference on Mechatronics and Machine Vision in Practice. Auckland:[s. n.],2008.
[11] HEGDE G P,ROBINSON C J,YE C,et al. Computer vision based wheel sinkage detection for robotic lunar exploration tasks[C]//IEEE International Conference on Mechatronics and Automation. Xi’an:IEEE,2010.
[12] HEGDE G M,CANG Y,ROBINSON C A,et al. Computer-vision-based wheel sinkage estimation for robot navigation on lunar terrain[J]. IEEE/ASME Transactions on Mechatronics,2013(4):1346-1356
[13] GAO H B,LV F T,YUAN B F,et al. Sinkage definition and visual detection for planetary rovers wheels on rough terrain based on wheel-soil interaction boundary[J]. Robotics and Autonomous Systems,2017,98:222-240
[14] NISTER D,NARODITSKY O,BERGEN J. Visual odometry[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Princeton,USA:IEEE,2004.
[15] MAIMONE M,CHENG Y,MATTHIES L. Two years of visual odometry on the Mars exploration rovers[J]. Journal of Field Robotics,2007,24(3):169-186
[16] GONZALEZ R,RODRIGUEZ F,GUZMN J L,et al. Combined visual odometry and visual compass for off-road mobile robots localization[J]. Robotica,2012,30(6):865-878
[17] DING L,GAO H B,FENG Z Q,et al. Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformance soil[J]. Journal of Terramechanics,2011,48:27-45
[18] LI N,DING L,GAO H B,et al. Detection method for planet rover slip ratio based on vision measuring technology[C]//The 35th Chinese Control Conference. Xi’an,China:[s. n.],2013.
[19] 李楠,高海波,吕凤天,等. 车辙图像频域分析及星球车车轮滑转率估计方法[J]. 宇航学报,2016,37(11):1356-1364
LI N,GAO H B,LV F T,et al. Wheel trace imprint image frequency domain analysis and rover wheel slip ratio estimation[J]. Journal of Astronautics,2016,37(11):1356-1364
[20] 吕凤天,高海波,李楠,等. 基于单目视觉的松软地面星球车车轮滑转率估计[J]. 机械工程学报,2019,56(2):77-85
LYU F T,GAO H B,Li N,et al. Monocular vision-based estimation of wheel slip ratio for planetary rovers in soft terrain[J]. Journal of Mechanical Engineering,2019,56(2):77-85
[21] GONZALEZ R,CHANDLER S,APOSTOLOPOULOS D. Characterization of machine learning algorithms for slippage estimation in planetary exploration rovers[J]. Journal of Terramechanics,2019,82:23-34
[22] GONZALEZ R,LAGNEMMA K. Slippage estimation and compensation for planetary exploration rovers. State of the art and future challenges[J]. Journal of Field Robotics,2019,35(4):564-577
[23] ROTHROCK B,KENNEDY R,CUNNINGHAM C,et al. Spoc:deep learning-based terrain classification for Mars rover missions[C]//Space Conference and Exposition. Long Beach,California: [s. n.]: 2016.
[24] 孙晶. 软地面轮?土作用力学参数在线识别[D]. 上海:上海大学,2015.
SUN J. On-line deformable terrain parameter identification based on wheel-terrain interaction mechanics[D]. Shanghai:Shanghai University,2015.
[25] MOORE H J,HUTTON R E,SCOTT R F,et al. Surface materials of the viking landing sites[J]. Journal of Geophysical Research,1977,82(28):4497-4523
[26] CRISP J,MATIJEVIC J R. Characterization of the martian surface deposits by the Mars Pathfinder Rover,Sojourner[J]. Science,1997,278(5344):1765-1768
[27] LI M,GAO F,SUN P,et al. The algorithm research of terrain parameter estimation based on lunar rover's traveling information[C]//International Conference on Optoelectronics and Image Processing. Haikou:[s. n.],2010.
[28] LIU Z,GUO J,DING L,et al. Online estimation of terrain parameters and resistance force based on equivalent sinkage for planetary rovers in longitudinal skid[J]. Mechanical Systems and Signal Processing,2019,119(15):39-54
[29] IAGNEMMA K,KANG S,SHIBLY H,et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers[J]. IEEE Transactions on Robotics,2004,20(5):921-927
[30] IGNEMMA K,SHIBLY H,DUBOWSKY S. On-line terrain parameter estimation for planetary rovers[C]//IEEE International Conference on Robotics and Automation. [S. l.]:IEEE,2002.
[31] 崔平远,刘冰,居鹤华. 月壤力学参数在线估计算法研究[J]. 计算机测量与控制,2008,16(2):245-269
CUI P Y,LIU B,JU H H. Research on mechanical parameters online estimation of lunar soil[J]. Computer Measurement & Control,2008,16(2):245-269
[32] HUTANGKABODEE S,ZWEIRI Y H,SENEVIRATNE L D,et al. Performance prediction of a wheeled vehicle on unknown terrain using identified soil parameters[C]//IEEE International Conference on Robotics and Automation. [S. l.]:IEEE,2006.
[33] CROSS M,ELLERY A,QADI A. Estimating terrain parameters for a rigid wheeled rover using neural networks[J]. Journal of Terramechanics,2013,50(3):165-174
[34] 丁亮. 月/星球车轮地作用地面力学模型及其应用研究[D]. 哈尔滨:哈尔滨工业大学,2009.
Ding L. Wheel-soil interaction terramechanics for lunar/planetary exploration rovers:modeling and application[D]. Harbin:Harbin Institute of Technology,2009.
[35] HOWARD A,SERAJI H. Vision-based terraincharacterization and traversability assessment[J]. Journal of Robotics System,2001,18(10):577-587
[36] CHHANIYARA S,BRUNSKILL C,YEOMANS B,et al. Terrain trafficability analysis and soil mechanical property identification for planetary rovers:a survey[J]. Journal of Terramechanics,2012,49(2):115-128
[37] HEVERLY M,MATTHEWS J,LIN J,et al. Traverse performance characterization for the Mars Science Laboratory Rover[J]. Journal of Field Robotics,2013,30(6):835-846
[38] CUNNINGHAM C,ONO M,NESNAS I,et al. Locally-adaptive slip prediction for planetary rovers using Gaussian processes[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). [S. l.]:IEEE,2017.
[39] SADHUKHAN D AND MOORE C. Online terrain estimation using internal sensors[C]//Proceedings of the Florida Conference on Recent Advances in Robotics. Boca Raton,USA:[s. n.],2013.
[40] WEISS C,FECHNER N,STARK M,et al. Comparison of different approaches to vibration-based terrain classification[C]//European Conference on Mobile Robotics. Freiburg,Germany:[s. n.],2007.
[41] BROOKS C A,IAGNEMMA K. Self-supervised terrain classification for planetary surface exploration rovers[J]. Journal of Field Robotics,2012,29(3):445-468
[42] 叶培建,孟林智,马继楠,等. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报(中英文),2019,6(4):303-316.
YE P J,MENG L Z,MA J N,et al. Suggestions on artificial intelligence technology application and development in deep space exploration[J]. 2019,6(4):303-316.
[43] 郭延宁,冯振,马广富,等. 行星车视觉导航与自主控制进展与展望[J]. 宇航学报,2018,39(11):1185-1196
GUO Y N,FENG Z,MA G F,et al. Advances and trends in visual navigation and autonomous control of a planetary rover[J]. Journal of Astronautics,2018,39(11):1185-1196
[44] 刘付成. 人工智能在航天器控制中的应用[J]. 飞控与探测,2018,1(1):16-25
LIU F C. Application of artificial intelligence in spacecraft[J]. Flight Control & Detection,2018,1(1):16-25
PDF(799 KB)

Accesses

Citations

Detail

Sections
Recommended

/