[1] 吴伟仁,刘继忠,唐玉华,等. 中国探月工程[J]. 深空探测学报(中英文),2019,6(5):405-416
WU W R,LIU J Z,TANG Y H,et al. China lunar exploration program[J]. Journal of Deep Space Exploration,2019,6(5):405-416
[2] 叶培建,彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学,2006,8(10):13-18
YE P J,PENG J. Deep space exploration and its prospect in China[J]. Engineering Science,2006,8(10):13-18
[3] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17
WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014,1(1):5-17
[4] 朱安文,刘磊,马世俊,等. 空间和动力在深空探测中的应用及发展综述[J]. 深空探测学报(中英文),2017,4(5):397-404
ZHU A W,LIU L,MA S J,et al. An overview of the use and development of nuclear power system in deep space exploration[J]. Journal of Deep Space Exploration,2017,4(5):397-404
[5] 张建中,任保国,王泽深,等. 放射性同位素温差发电器在深空探测中的应用[J]. 宇航学报,2008,29(2):644-647
ZHANG J Z,REN B G,WANG Z S,et al. Radioisotope thermoelectric generators in deep space exploration[J]. Journal of Astronautics,2008,29(2):644-647
[6] 吴伟仁,刘继忠,赵小津,等. 空间核反应堆电源研究[J]. 中国科学:技术科学,2019,49(1):1-12
WU W R,LIU J Z,ZHAO X J,et al. System engineering research and application foreground of space nuclear reactor power generators[J]. Science Sinica Technologica,2019,49(1):1-12
[7] 胡古,赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报(中英文),2017,4(5):430-443
HU G,ZHAO S Z. Overview of space nuclear reactor power technology[J]. Journal of Deep Space Exploration,2017,4(5):430-443
[8] 周彪,吉宇,孙俊,等. 空间核反应堆电源需求分析研究[J]. 原子能科学技术,2020,54(10):1912-1923
[9] 陈杰,高劭伦,夏陈超,等. 空间堆核动力技术选择研究[J]. 上海航天,2019,36(6):1-10
CHEN J,GAO S L,XIA C C,et al. Study on space nuclear power technological option[J]. Aerospace Shanghai,2019,36(6):1-10
[10] 张建中. 温差电技术[M]. 天津:天津科学技术出版社,2013.
ZHANG J Z. Thermoelectric technology[M]. Tianjin:Tianjin Science and Technology Press,2013.
[11] 宋馨,陈向东,雷英俊,等. 嫦娥四号着陆器月夜热电联供系统设计与验证[J]. 航天器工程,2019,28(4):65-69
SONG X,CHEN X D,LEI Y J,el al. Design and verification of heat and electricity cogeneration system in moon night of Chang’e-4 lander[J]. Spacecraft Engineering,2019,28(4):65-69
[12] 彭磊,侯旭峰,阎勇,等. 嫦娥四号着陆器同位素温差电池设计与验证[J]. 电源技术,2020,44(4):607-612
PENG L,HOU X F,YAN Y,et al. Design and verification of radioisotope thermoelectric generator for Chang’e-4 lander[J]. Chinese Journal of Power Sources,2020,44(4):607-612
[13] PUSTOVALOV A. Mini-RTGs on plutonium-238:development and application[C]//Proceedings of Eighteenth International Conference on Thermoelectrics. Baltimore,MD,USA:IEEE,1999.
[14] ROWE D M. CRC handbook of Thermoelectrics[M]. New York:CRC Press,1995.
[15] EL-GENK M S,SABER H H. Radioisotope power systems with skutterudite-based thermoelectric converters[J]. Space Technology and Applications International Forum-Staif,2005,746(1):485-494
[16] HOLGATE T C,BENNETT R,HAMMEL T,et al. Increasing the efficiency of the multi-mission radioisotope thermoelectric generator[J]. Journal of Electronic Materials,2015,44(6):1814-1821
[17] 蔡善钰,何舜尧. 空间放射性同位素电池发展回顾和新世纪应用前景[J]. 核科学与工程,2004,24(2):97-104
CAI S Y,HE S Y. Retrospection of development for radioisotope power systems in space and its prospect of application in new century[J]. Chinese Journal of Nuclear Science and Engineering,2004,24(2):97-104
[18] 侯旭峰. 百毫瓦同位素温差电池技术研究[D]. 天津:天津大学,2014.
HOU X F. Study on technology of the hundred milli-watt radioisotope thermoelectric generator[D]. Tianjin:Tianjin University,2014.
[19] SHI X L,ZOU J,CHEN Z G. Advanced thermoelectric design:from materials and structures to devices[J]. Chemical Reviews,2020,120(5):7399-7515
[20] 陈立东,刘睿恒,史迅. 热电材料与器件[M]. 北京:科学出版社,2017.
CHEN L D,LIU R H,SHI X. Thermoelectric materials and devices[D]. Beijing:Science Press,2017.
[21] ZHU T J,FU C G,XIE H H,et al. High efficiency half-Heusler thermoelectric materials for energy harvesting[J]. Advanced Energy Materials,2015,19(5):1-13
[22] FU C G,BAI S Q,LIU Y T,et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[J]. Nature Communications,2015,8144:1-7
[23] XING Y F,LIU R H,SUN Y Y,et al. Self-propagation high-temperature synthesis of half-Heusler thermoelectric materials:reaction mechanism and applicability[J]. Journal of Materials Chemistry A,2018,40(6):19470-19478
[24] ZHAO W Y,LIU Z Y,SUN Z G,et al. Superparamagnetic enhancement of thermoelectric performance[J]. Nature,2017,549(7671):247-251
[25] SHI X,YANG J,SALVADOR J R,et al. Multiple-filled skutterudites:high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society,2011,133(20):7837-7846
[26] ROGL G,GRYTSIV A,ROGL P,et al. Multifilled nanocrystalline p-type didymium - Skutterudites with ZT > 1.2[J]. Intermetallics,2010,18(12):2435-2444
[27] 张骐昊,柏胜强,陈立东. 热电发电器件与应用技术:现状、挑战与展望[J]. 无机材料学报,2019,34(3):279-293
ZHANG Q H,BAI S Q,CHEN L D. Technologies and applications of thermoelectric devices:current status,Challenges and prospects[J]. Journal of Inorganic Materials,2019,34(3):279-293
[28] LIU W S,BAI S Q. Thermoelectric interface materials:a perspective to the challenge of thermoelectric power generation module[J]. Journal of Materiomics,2019,5:321-336
[29] 邵笑,刘睿恒,王亮,等. 服役条件下方钴矿基热电元件的界面应力分析[J]. 无机材料学报,2019,35(2):225-234
SHAO X,LIU R H,WANG H,et al. Interfacial stress analysis on skutterudite-based thermoelectric joints under service conditions[J]. Journal of Inorganic Materials,2019,35(2):225-234
[30] ZHANG Q H,LIAO J C,TANG Y S,et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration[J]. Energy & Environmental Science,2017,10:956-963
[31] ZONG P A,HANUS R,DYLLA M,et al. Skutterudite with graphene-modified grain-boundary complexion enhances ZT enabling high-efficiency thermoelectric device[J]. Energy & Environmental Science,2017,10(1):183-91
[32] ZHANG Q,ZHOU Z,DYLLA M,et al. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites[J]. Nano Energy,2017,41:501-510
[33] CHU J,HUANG J,LIU R,et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices[J]. Nature Communications,2020,11(1):2723
[34] XING Y F,LIU R H,LIAO J C,et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization[J]. Energy & Environmental Science,2019,12(11):3390-3399
[35] XING Y F,LIU R H,LIAO J C,et al. A device-to-material strategy guiding the “double-high” thermoelectric module[J]. Joule,2020,4(11):2475-2483
[36] 缪力威. Kilopower与KRUSTY的发展脉络及研发现状[J]. 科技创新导报,2020(17):65-69
[37] 彭磊,谢奇林,范晓强,等. 星球表面探测用核反应堆电源初步研究[J]. 载人航天,2015,21(3):237-242
PENG L,XIE Q L,FAN X Q,et al. Preliminary study on nuclear reactor power source for planetary surface explorations[J]. Manned Spaceflight,2015,21(3):237-242
[38] 姚成志,胡古,解家春,等. 月球基地核电源系统方案研究[J]. 原子能科学技术,2016,50(3):464-470
YAO C Z,HU G,XIE J C,et al. Scheme research of nuclear reactor power system for lunar base[J]. Atomic Energy Science and Technology,2016,50(3):464-470
[39] 马季军,何小斌,乔卫新,等. 载人月球任务能源系统初探[J]. 载人航天,2019,25(2):143-150
MA J J,HE X B,QIAO W X,et al. Research on energy system in manned lunar mission[J]. Manned Spaceflight,2019,25(2):143-150