Research Progress of Thermoelectric Materials and Devices for Radioisotope Thermoelectric Generators

BAI Shengqiang1,2, LIAO Jingchen1,2, XIA Xugui1,2, CHEN Lidong1,2

PDF(3113 KB)
PDF(3113 KB)
Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (6) : 525-535. DOI: 10.15982/j.issn.2096-9287.2020.20200062
Topic:Exploring the Solar System Boundary
Topic:Exploring the Solar System Boundary

Research Progress of Thermoelectric Materials and Devices for Radioisotope Thermoelectric Generators

  • BAI Shengqiang1,2, LIAO Jingchen1,2, XIA Xugui1,2, CHEN Lidong1,2
Author information +
History +

Abstract

Radioisotope Thermoelectric Generator (RTG) have been used in deep space exploration since 1960s. In this paper, the main characteristics and key technologies of the RTG battery are reviewed,and the current developments of high efficiency thermoelectric conversion materials and devices are introduced. Considering the requirements of the deep space exploration, the developments thoughts of the thermoelectric conversion and devices technologies for RTG are put forward.

Keywords

radioisotope thermoelectric generator / thermoelectric materials / thermoelectric modules

Cite this article

Download citation ▾
BAI Shengqiang, LIAO Jingchen, XIA Xugui, CHEN Lidong. Research Progress of Thermoelectric Materials and Devices for Radioisotope Thermoelectric Generators. Journal of Deep Space Exploration, 2020, 7(6): 525‒535 https://doi.org/10.15982/j.issn.2096-9287.2020.20200062

References

[1] 吴伟仁,刘继忠,唐玉华,等. 中国探月工程[J]. 深空探测学报(中英文),2019,6(5):405-416
WU W R,LIU J Z,TANG Y H,et al. China lunar exploration program[J]. Journal of Deep Space Exploration,2019,6(5):405-416
[2] 叶培建,彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学,2006,8(10):13-18
YE P J,PENG J. Deep space exploration and its prospect in China[J]. Engineering Science,2006,8(10):13-18
[3] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17
WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014,1(1):5-17
[4] 朱安文,刘磊,马世俊,等. 空间和动力在深空探测中的应用及发展综述[J]. 深空探测学报(中英文),2017,4(5):397-404
ZHU A W,LIU L,MA S J,et al. An overview of the use and development of nuclear power system in deep space exploration[J]. Journal of Deep Space Exploration,2017,4(5):397-404
[5] 张建中,任保国,王泽深,等. 放射性同位素温差发电器在深空探测中的应用[J]. 宇航学报,2008,29(2):644-647
ZHANG J Z,REN B G,WANG Z S,et al. Radioisotope thermoelectric generators in deep space exploration[J]. Journal of Astronautics,2008,29(2):644-647
[6] 吴伟仁,刘继忠,赵小津,等. 空间核反应堆电源研究[J]. 中国科学:技术科学,2019,49(1):1-12
WU W R,LIU J Z,ZHAO X J,et al. System engineering research and application foreground of space nuclear reactor power generators[J]. Science Sinica Technologica,2019,49(1):1-12
[7] 胡古,赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报(中英文),2017,4(5):430-443
HU G,ZHAO S Z. Overview of space nuclear reactor power technology[J]. Journal of Deep Space Exploration,2017,4(5):430-443
[8] 周彪,吉宇,孙俊,等. 空间核反应堆电源需求分析研究[J]. 原子能科学技术,2020,54(10):1912-1923
[9] 陈杰,高劭伦,夏陈超,等. 空间堆核动力技术选择研究[J]. 上海航天,2019,36(6):1-10
CHEN J,GAO S L,XIA C C,et al. Study on space nuclear power technological option[J]. Aerospace Shanghai,2019,36(6):1-10
[10] 张建中. 温差电技术[M]. 天津:天津科学技术出版社,2013.
ZHANG J Z. Thermoelectric technology[M]. Tianjin:Tianjin Science and Technology Press,2013.
[11] 宋馨,陈向东,雷英俊,等. 嫦娥四号着陆器月夜热电联供系统设计与验证[J]. 航天器工程,2019,28(4):65-69
SONG X,CHEN X D,LEI Y J,el al. Design and verification of heat and electricity cogeneration system in moon night of Chang’e-4 lander[J]. Spacecraft Engineering,2019,28(4):65-69
[12] 彭磊,侯旭峰,阎勇,等. 嫦娥四号着陆器同位素温差电池设计与验证[J]. 电源技术,2020,44(4):607-612
PENG L,HOU X F,YAN Y,et al. Design and verification of radioisotope thermoelectric generator for Chang’e-4 lander[J]. Chinese Journal of Power Sources,2020,44(4):607-612
[13] PUSTOVALOV A. Mini-RTGs on plutonium-238:development and application[C]//Proceedings of Eighteenth International Conference on Thermoelectrics. Baltimore,MD,USA:IEEE,1999.
[14] ROWE D M. CRC handbook of Thermoelectrics[M]. New York:CRC Press,1995.
[15] EL-GENK M S,SABER H H. Radioisotope power systems with skutterudite-based thermoelectric converters[J]. Space Technology and Applications International Forum-Staif,2005,746(1):485-494
[16] HOLGATE T C,BENNETT R,HAMMEL T,et al. Increasing the efficiency of the multi-mission radioisotope thermoelectric generator[J]. Journal of Electronic Materials,2015,44(6):1814-1821
[17] 蔡善钰,何舜尧. 空间放射性同位素电池发展回顾和新世纪应用前景[J]. 核科学与工程,2004,24(2):97-104
CAI S Y,HE S Y. Retrospection of development for radioisotope power systems in space and its prospect of application in new century[J]. Chinese Journal of Nuclear Science and Engineering,2004,24(2):97-104
[18] 侯旭峰. 百毫瓦同位素温差电池技术研究[D]. 天津:天津大学,2014.
HOU X F. Study on technology of the hundred milli-watt radioisotope thermoelectric generator[D]. Tianjin:Tianjin University,2014.
[19] SHI X L,ZOU J,CHEN Z G. Advanced thermoelectric design:from materials and structures to devices[J]. Chemical Reviews,2020,120(5):7399-7515
[20] 陈立东,刘睿恒,史迅. 热电材料与器件[M]. 北京:科学出版社,2017.
CHEN L D,LIU R H,SHI X. Thermoelectric materials and devices[D]. Beijing:Science Press,2017.
[21] ZHU T J,FU C G,XIE H H,et al. High efficiency half-Heusler thermoelectric materials for energy harvesting[J]. Advanced Energy Materials,2015,19(5):1-13
[22] FU C G,BAI S Q,LIU Y T,et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[J]. Nature Communications,2015,8144:1-7
[23] XING Y F,LIU R H,SUN Y Y,et al. Self-propagation high-temperature synthesis of half-Heusler thermoelectric materials:reaction mechanism and applicability[J]. Journal of Materials Chemistry A,2018,40(6):19470-19478
[24] ZHAO W Y,LIU Z Y,SUN Z G,et al. Superparamagnetic enhancement of thermoelectric performance[J]. Nature,2017,549(7671):247-251
[25] SHI X,YANG J,SALVADOR J R,et al. Multiple-filled skutterudites:high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society,2011,133(20):7837-7846
[26] ROGL G,GRYTSIV A,ROGL P,et al. Multifilled nanocrystalline p-type didymium - Skutterudites with ZT > 1.2[J]. Intermetallics,2010,18(12):2435-2444
[27] 张骐昊,柏胜强,陈立东. 热电发电器件与应用技术:现状、挑战与展望[J]. 无机材料学报,2019,34(3):279-293
ZHANG Q H,BAI S Q,CHEN L D. Technologies and applications of thermoelectric devices:current status,Challenges and prospects[J]. Journal of Inorganic Materials,2019,34(3):279-293
[28] LIU W S,BAI S Q. Thermoelectric interface materials:a perspective to the challenge of thermoelectric power generation module[J]. Journal of Materiomics,2019,5:321-336
[29] 邵笑,刘睿恒,王亮,等. 服役条件下方钴矿基热电元件的界面应力分析[J]. 无机材料学报,2019,35(2):225-234
SHAO X,LIU R H,WANG H,et al. Interfacial stress analysis on skutterudite-based thermoelectric joints under service conditions[J]. Journal of Inorganic Materials,2019,35(2):225-234
[30] ZHANG Q H,LIAO J C,TANG Y S,et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration[J]. Energy & Environmental Science,2017,10:956-963
[31] ZONG P A,HANUS R,DYLLA M,et al. Skutterudite with graphene-modified grain-boundary complexion enhances ZT enabling high-efficiency thermoelectric device[J]. Energy & Environmental Science,2017,10(1):183-91
[32] ZHANG Q,ZHOU Z,DYLLA M,et al. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites[J]. Nano Energy,2017,41:501-510
[33] CHU J,HUANG J,LIU R,et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices[J]. Nature Communications,2020,11(1):2723
[34] XING Y F,LIU R H,LIAO J C,et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization[J]. Energy & Environmental Science,2019,12(11):3390-3399
[35] XING Y F,LIU R H,LIAO J C,et al. A device-to-material strategy guiding the “double-high” thermoelectric module[J]. Joule,2020,4(11):2475-2483
[36] 缪力威. Kilopower与KRUSTY的发展脉络及研发现状[J]. 科技创新导报,2020(17):65-69
[37] 彭磊,谢奇林,范晓强,等. 星球表面探测用核反应堆电源初步研究[J]. 载人航天,2015,21(3):237-242
PENG L,XIE Q L,FAN X Q,et al. Preliminary study on nuclear reactor power source for planetary surface explorations[J]. Manned Spaceflight,2015,21(3):237-242
[38] 姚成志,胡古,解家春,等. 月球基地核电源系统方案研究[J]. 原子能科学技术,2016,50(3):464-470
YAO C Z,HU G,XIE J C,et al. Scheme research of nuclear reactor power system for lunar base[J]. Atomic Energy Science and Technology,2016,50(3):464-470
[39] 马季军,何小斌,乔卫新,等. 载人月球任务能源系统初探[J]. 载人航天,2019,25(2):143-150
MA J J,HE X B,QIAO W X,et al. Research on energy system in manned lunar mission[J]. Manned Spaceflight,2019,25(2):143-150
PDF(3113 KB)

Accesses

Citations

Detail

Sections
Recommended

/