[1] 马继楠,裴照宇,刘继忠,等. 月球探测进展与国际月球科研站[J]. 科学通报,2020,65(24):49-58
MA J N,PEI Z Y,LIU J Z,et al. Progress in lunar exploration and international lunar research station[J]. Scientific Bulletin,2020,65(24):49-58
[2] 刘志强. 适用于载人航天器的低压大功率电源系统的设计[D]. 上海:上海交通大学,2013.
LIU Z Q. Design of low-voltage high-power power supply system suitable for manned spacecraft [D]. Shanghai : Shanghai Jiaotong University,2013.
[3] 杨明卿. 光伏发电系统综合能效提升的研究与实现[D]. 青岛:青岛科技大学,2017.
YANG M Q. Research and realization of comprehensive energy efficiency improvement of photovoltaic power generation system [D] . Qingdao: Qingdao University of Science and Technology,2017.
[4] 胡古,赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报(中英文),2017,5(4):38-51
HU G,ZHAO S Z. Overview of space nuclear reactor power technology[J]. Journal of Deep Space Exploration,2017,5(4):38-51
[5] 余美芳. 核反应堆压力容器用钢及其结构的断裂韧性研究[D]. 天津:天津大学,2016.
YU M F. Research on Fracture Toughness of Steel and Its Structure for Nuclear Reactor Pressure Vessel [D]. Tianjin: Tianjin University,2016.
[6] 陈琦,刘治钢,张晓峰,等. 航天器电源技术[M]. 北京:北京理工大学出版社,2018.
[7] 李霞林. 交直流混合微电网稳定运行控制[D]. 天津:天津大学,2014.
LI X L. Stable operation control of AC/DC hybrid microgrid [D]. Tianjin: Tianjin University,2014.
[8] 叶培建,肖福根. 月球探测工程中的月球环境问题[J]. 航天器环境工程,2006,23(1):1-11
YE P J,XIAO F G. Lunar environmental issues in lunar exploration projects[J]. Spacecraft Environmental Engineering,2006,23(1):1-11
[9] SPENCE B R,WHITE S F, WILDER N, et al. UltraFlex-175solar array technology maturation a chievements for NASA's New Millennium Program (NMP) Space Technology 8 (ST8)[C]//Conference Record of the IEEE Photovoltaic Specialists Conference.[S.l.]: IEEE, 2006.
[10] FATEMI N, LYONS J,ESKENAZI M. Qualification and production of Emcore ZTJ solar panels for space missions[C]// 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). [S.l.]: IEEE, 2013.
[11] KAWASAKI O,YAMAMOTO Y,MATSUDA S. NASDA`s space solar cell -- ground test data and flight data[C]//A Joint Conference of PVSC, PVSEC and PSEC. USA: IEEE, 1994.
[12] LANDIS G,JENKINS P,SEXTON J A,et al. A facility for space calibration and measurement of solar cells on the International Space Station[C]//Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference. USA: IEEE, 2000.
[13] ROSS B. Status of the emerging technology of stirling machines[J]. IEEE Aerospace and Electronic Systems Magazine,1995,10(6):34-39
[14] THIEME L G, SCHREIBER J G. NASA GRC technology development project for a Stirling radioisotope power system[C]// Energy Conversion Engineering Conference and Exhibit, 2000. [S.l.]: IECEC, 2000.
[15] AIAA. Assessment of the free-piston Stirling convertor as a long life power convertor for space[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit (AIAA). [S.l.]: AIAA, 2000.
[16] PING Z,YU B,ZHU S,et al. Research on control strategy of free-piston stirling-engine linear-generator system[C]//2014 17th International Conference on Electrical Machines and Systems (ICEMS). [S.l.]: IEEE, 2015.
[17] 李霞林,郭力,王成山,等. 直流微电网关键技术研究综述[J]. 中国电机工程学报,2016,36(1):2-16
LI X L,GUO L,WANG C S,et al. Summary of research on key technologies of DC microgrid[J]. Summary of Research on Key Technologies of DC Microgrid,2016,36(1):2-16
[18] 徐政,屠卿瑞,裘鹏. 从2010国际大电网会议看直流输电技术的发展方向[J]. 高电压技术,2010,36(12):3070-3077
XU Z,TU Q R,QIU P. Looking at the development direction of DC transmission technology from the 2010 International Large Power Grid Conference[J]. High Voltage Technology,2010,36(12):3070-3077
[19] SALOMONSSON D ,SANNINO A. Low-Voltage DC distribution system for commercial power systems with sensitive electronic loads[J]. IEEE Transactions on Power Delivery,2007,22(3):1620-1627
[20] BARAN M E,MAHAJAN N R. DC distribution for industrial systems:opportunities and challenges[J]. IEEE Transactions on Industry Applications,2003,39(6):1596-1601
[21] 孙鹏飞,贺春光,邵华,等. 直流配电网研究现状与发展[J]. 电力自动化设备,2016,36(6):64-73
SUN P F,HE C G,SHAO H,et al. Research status and development of DC distribution network[J]. Electric Power Automation Equipment,2016,36(6):64-73
[22] 马钊,焦在滨,李蕊. 直流配电网络架构与关键技术[J]. 电网技术,2017,41(10):3348-3357
MA Z,JIAO Z B,LI R. DC distribution network architecture and key technologies[J]. Power Grid Technology,2017,41(10):3348-3357
[23] 熊志杰. 含光伏的直流配电网短路特性及固态断路器研究[D]. 长沙:湖南大学,2018.
XIONG Z J. Research on short circuit characteristics of DC distribution network containing photovoltaics and solid state circuit breakers [D]. Changsha: Hunan University,2018.
[24] PATEL M. Spacecraft power systems[M]. USA: CRC Press, 2004..
[25] 余成洲,赖为华. 氢镍电池的现状与发展方向[J]. 新材料产业,2001(6):26-29
YU C Z, LAI W H. Current situation and development direction of MH/Ni battery[J]. Battery Bimonthly,2001(6):26-29
[26] MAY G J,DAVIDSON A,MONAHOV B. Lead batteries for utility energy storage:a review[J]. Journal of Energy Storage,2018,15:145-157
[27] 马季军,何小斌,涂浡. 我国载人航天电源系统的技术发展成就及趋势[J]. 上海航天(中英文),2021,38(3):207-218
MA J J, HE X B, TU B. Technical development achievements and trends of manned spaceflight power system in China[J]. Aerospace Shanghai,2021,38(3):207-218
[28] 徐钦赐,贠海涛,杨腾盛,等. 混合动力汽车氢镍电池建模研究[J]. 电源技术,2021,45(2):222-224+262
XU Q C, YUN H T, YANG T S, et al. Research on modeling of NI/MH battery hybrid electric vehicle[J]. Chinese Journal of Power Sources,2021,45(2):222-224+262
[29] 胡京. 含氢镍电池的储能系统仿真建模及其应用研究[D]. 长沙:湖南大学,2014.
[30] 于磊,王宏佳,王林涛,等. 航天器高压直接配电设计研究[J]. 载人航天,2017,23(6):770-775
YU L,WANG H J,WANG L T,et al. Research on high voltage direct power distribution design of spacecraft[J]. Manned Space Flight,2017,23(6):770-775
[31] 王娜,黄峥,马季军,等. 我国交会对接任务中航天器电源设计与应用[J]. 载人航天,2013,19(3):52-59
WANG N,HUANG Z,MA J J,et al. Design and application of spacecraft power supply in my country's rendezvous and docking missions[J]. Manned Space Flight,2013,19(3):52-59
[32] 钟丹华,唐筱,舒斌,等. 载人飞船电源系统并网供电特性研究[J]. 航天器工程,2020,140(1):33-37
ZHONG D H,TANG X,SHU B,et al. Research on grid-connected power supply characteristics of manned spacecraft power system[J]. Spacecraft Engineering,2020,140(1):33-37
[33] 于磊. 空间电源系统并网供电技术研究[D]. 北京:北京交通大学,2018.
YU L. Research on grid-connected power supply technology of space power system [D]. Beijing: Beijing Jiaotong University,2018.
[34] HE D ,SHUAI Z,LEI Z,et al. A SiC JFET-based solid state circuit breaker with digitally controlled current-time profiles[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics,2019:7(3):1556 - 1565
[35] 孙怀义. 冗余设计技术与可靠性关系研究[J]. 仪器仪表学报,2007,28(11):2089-2092
SUN H Y. Research on the Relationship between redundancy design technology and reliability[J]. Journal of Instrumentation,2007,28(11):2089-2092
[36] 齐爽. 控制器双冗余设计与实现[D]. 哈尔滨:哈尔滨工业大学,2015.
QI S. Design and realization of dual redundancy controller [D]. Harbin: Harbin Institute of Technology,2015.
[37] 于萍,张洪华,李骥,等. 嫦娥五号着陆上升组合体GNC系统设计与实现[J]. 中国科学:技术科学,2021,51(7):763-777.
YU P,ZHANG H H,LI J,et al. Design and implementation of GNC system of lander and ascender module of Chang’e-5 spacecraft[J]. Sci SinTech,2021,51:763–777.
[38] 童杰文. 高可靠皮卫星综合电子系统研究[D]. 杭州:浙江大学,2014.
TONG J W. Research of high reliable composite electronic systems for pico-satellite [D]. Hangzhou: Zhejiang University,2014.
[39] 陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1-18
TAO F,LIU W R,ZHANG Y,et al. Digital twin five-dimensional model and ten major applications[J]. Computer Integrated Manufacturing System,2019,25(1):1-18
[40] 孙惠斌,颜建兴,魏小红,等. 数字孪生驱动的航空发动机装配技术[J]. 中国机械工程,2020,31(7):833-841.
SUN H B,YAN J X,WEI X H,et al. Aeroengine assembly technology driven by digital twin [J]. China Mechanical Engineering,2020,31(7):833-841.
[41] 刘蔚然,陶飞,程江峰,等. 数字孪生卫星:概念,关键技术及应用[J]. 计算机集成制造系统,2020,26(3):565-588
LIU W R,TAO F,CHENG J F,et al. Digital twin satellite:concept,key technology and application[J]. Computer Integrated Manufacturing System,2020,26(3):565-588
[42] 孟松鹤,叶雨玫,杨强,等. 数字孪生及其在航空航天中的应用[J]. 航空学报,2020,41(9):1-12.
MENG S H,YE Y M,YANG Q,et al. Digital twin and its application in aerospace [J]. Journal of Aeronautics,2020,41(9):1-12.