A High-reliability and Scalable Lunar Surface Power Distribution Network Frame Vision Based on Micro-nuclear Reactor

XIA Yan1,2, HUANG Wen2, FENG Yu2, JIN Zhangtao2, OU Xuedong1, XU Jinghao1,2, SHUAI Zhikang2

PDF(2965 KB)
PDF(2965 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (1) : 3-13. DOI: 10.15982/j.issn.2096-9287.2022.20210138
Special Issue:Technology and Application of Deep Space Exploration
Special Issue:Technology and Application of Deep Space Exploration

A High-reliability and Scalable Lunar Surface Power Distribution Network Frame Vision Based on Micro-nuclear Reactor

  • XIA Yan1,2, HUANG Wen2, FENG Yu2, JIN Zhangtao2, OU Xuedong1, XU Jinghao1,2, SHUAI Zhikang2
Author information +
History +

Abstract

The lunar surface distribution grid is the long-term stable power source and skeleton support for the lunar scientific research station. The miniature nuclear reactor is light in weight, compact in structure, and extensible in scale. It can provide a long-lasting energy source for the power generation devices of the lunar scientific research station. To meet the needs of lunar scientific research tasks and the construction of large-scale lunar bases in the future, the lunar power distribution grid must have high reliability and scalability. Therefore, a high-reliability and scalable power distribution grid, integrated with micro nuclear reactors, for the lunar surface, as well as its relevant reliability guarantee technologies was proposed in this paper. The feasibility and advantages of the power distribution grid frame proposed were discussed from the perspectives of the topology, partition interconnection and operation control methods of the distribution grid. This vision is aimed to provide inspiration for manned moon landing and extraterrestrial base construction plans.

Keywords

miniature nuclear reactor / stirling engine / lunar surface power distribution grid / power supply guarantee technology

Cite this article

Download citation ▾
XIA Yan, HUANG Wen, FENG Yu, JIN Zhangtao, OU Xuedong, XU Jinghao, SHUAI Zhikang. A High-reliability and Scalable Lunar Surface Power Distribution Network Frame Vision Based on Micro-nuclear Reactor. Journal of Deep Space Exploration, 2022, 9(1): 3‒13 https://doi.org/10.15982/j.issn.2096-9287.2022.20210138

References

[1] 马继楠,裴照宇,刘继忠,等. 月球探测进展与国际月球科研站[J]. 科学通报,2020,65(24):49-58
MA J N,PEI Z Y,LIU J Z,et al. Progress in lunar exploration and international lunar research station[J]. Scientific Bulletin,2020,65(24):49-58
[2] 刘志强. 适用于载人航天器的低压大功率电源系统的设计[D]. 上海:上海交通大学,2013.
LIU Z Q. Design of low-voltage high-power power supply system suitable for manned spacecraft [D]. Shanghai : Shanghai Jiaotong University,2013.
[3] 杨明卿. 光伏发电系统综合能效提升的研究与实现[D]. 青岛:青岛科技大学,2017.
YANG M Q. Research and realization of comprehensive energy efficiency improvement of photovoltaic power generation system [D] . Qingdao: Qingdao University of Science and Technology,2017.
[4] 胡古,赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报(中英文),2017,5(4):38-51
HU G,ZHAO S Z. Overview of space nuclear reactor power technology[J]. Journal of Deep Space Exploration,2017,5(4):38-51
[5] 余美芳. 核反应堆压力容器用钢及其结构的断裂韧性研究[D]. 天津:天津大学,2016.
YU M F. Research on Fracture Toughness of Steel and Its Structure for Nuclear Reactor Pressure Vessel [D]. Tianjin: Tianjin University,2016.
[6] 陈琦,刘治钢,张晓峰,等. 航天器电源技术[M]. 北京:北京理工大学出版社,2018.
[7] 李霞林. 交直流混合微电网稳定运行控制[D]. 天津:天津大学,2014.
LI X L. Stable operation control of AC/DC hybrid microgrid [D]. Tianjin: Tianjin University,2014.
[8] 叶培建,肖福根. 月球探测工程中的月球环境问题[J]. 航天器环境工程,2006,23(1):1-11
YE P J,XIAO F G. Lunar environmental issues in lunar exploration projects[J]. Spacecraft Environmental Engineering,2006,23(1):1-11
[9] SPENCE B R,WHITE S F, WILDER N, et al. UltraFlex-175solar array technology maturation a chievements for NASA's New Millennium Program (NMP) Space Technology 8 (ST8)[C]//Conference Record of the IEEE Photovoltaic Specialists Conference.[S.l.]: IEEE, 2006.
[10] FATEMI N, LYONS J,ESKENAZI M. Qualification and production of Emcore ZTJ solar panels for space missions[C]// 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). [S.l.]: IEEE, 2013.
[11] KAWASAKI O,YAMAMOTO Y,MATSUDA S. NASDA`s space solar cell -- ground test data and flight data[C]//A Joint Conference of PVSC, PVSEC and PSEC. USA: IEEE, 1994.
[12] LANDIS G,JENKINS P,SEXTON J A,et al. A facility for space calibration and measurement of solar cells on the International Space Station[C]//Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference. USA: IEEE, 2000.
[13] ROSS B. Status of the emerging technology of stirling machines[J]. IEEE Aerospace and Electronic Systems Magazine,1995,10(6):34-39
[14] THIEME L G, SCHREIBER J G. NASA GRC technology development project for a Stirling radioisotope power system[C]// Energy Conversion Engineering Conference and Exhibit, 2000. [S.l.]: IECEC, 2000.
[15] AIAA. Assessment of the free-piston Stirling convertor as a long life power convertor for space[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit (AIAA). [S.l.]: AIAA, 2000.
[16] PING Z,YU B,ZHU S,et al. Research on control strategy of free-piston stirling-engine linear-generator system[C]//2014 17th International Conference on Electrical Machines and Systems (ICEMS). [S.l.]: IEEE, 2015.
[17] 李霞林,郭力,王成山,等. 直流微电网关键技术研究综述[J]. 中国电机工程学报,2016,36(1):2-16
LI X L,GUO L,WANG C S,et al. Summary of research on key technologies of DC microgrid[J]. Summary of Research on Key Technologies of DC Microgrid,2016,36(1):2-16
[18] 徐政,屠卿瑞,裘鹏. 从2010国际大电网会议看直流输电技术的发展方向[J]. 高电压技术,2010,36(12):3070-3077
XU Z,TU Q R,QIU P. Looking at the development direction of DC transmission technology from the 2010 International Large Power Grid Conference[J]. High Voltage Technology,2010,36(12):3070-3077
[19] SALOMONSSON D ,SANNINO A. Low-Voltage DC distribution system for commercial power systems with sensitive electronic loads[J]. IEEE Transactions on Power Delivery,2007,22(3):1620-1627
[20] BARAN M E,MAHAJAN N R. DC distribution for industrial systems:opportunities and challenges[J]. IEEE Transactions on Industry Applications,2003,39(6):1596-1601
[21] 孙鹏飞,贺春光,邵华,等. 直流配电网研究现状与发展[J]. 电力自动化设备,2016,36(6):64-73
SUN P F,HE C G,SHAO H,et al. Research status and development of DC distribution network[J]. Electric Power Automation Equipment,2016,36(6):64-73
[22] 马钊,焦在滨,李蕊. 直流配电网络架构与关键技术[J]. 电网技术,2017,41(10):3348-3357
MA Z,JIAO Z B,LI R. DC distribution network architecture and key technologies[J]. Power Grid Technology,2017,41(10):3348-3357
[23] 熊志杰. 含光伏的直流配电网短路特性及固态断路器研究[D]. 长沙:湖南大学,2018.
XIONG Z J. Research on short circuit characteristics of DC distribution network containing photovoltaics and solid state circuit breakers [D]. Changsha: Hunan University,2018.
[24] PATEL M. Spacecraft power systems[M]. USA: CRC Press, 2004..
[25] 余成洲,赖为华. 氢镍电池的现状与发展方向[J]. 新材料产业,2001(6):26-29
YU C Z, LAI W H. Current situation and development direction of MH/Ni battery[J]. Battery Bimonthly,2001(6):26-29
[26] MAY G J,DAVIDSON A,MONAHOV B. Lead batteries for utility energy storage:a review[J]. Journal of Energy Storage,2018,15:145-157
[27] 马季军,何小斌,涂浡. 我国载人航天电源系统的技术发展成就及趋势[J]. 上海航天(中英文),2021,38(3):207-218
MA J J, HE X B, TU B. Technical development achievements and trends of manned spaceflight power system in China[J]. Aerospace Shanghai,2021,38(3):207-218
[28] 徐钦赐,贠海涛,杨腾盛,等. 混合动力汽车氢镍电池建模研究[J]. 电源技术,2021,45(2):222-224+262
XU Q C, YUN H T, YANG T S, et al. Research on modeling of NI/MH battery hybrid electric vehicle[J]. Chinese Journal of Power Sources,2021,45(2):222-224+262
[29] 胡京. 含氢镍电池的储能系统仿真建模及其应用研究[D]. 长沙:湖南大学,2014.
[30] 于磊,王宏佳,王林涛,等. 航天器高压直接配电设计研究[J]. 载人航天,2017,23(6):770-775
YU L,WANG H J,WANG L T,et al. Research on high voltage direct power distribution design of spacecraft[J]. Manned Space Flight,2017,23(6):770-775
[31] 王娜,黄峥,马季军,等. 我国交会对接任务中航天器电源设计与应用[J]. 载人航天,2013,19(3):52-59
WANG N,HUANG Z,MA J J,et al. Design and application of spacecraft power supply in my country's rendezvous and docking missions[J]. Manned Space Flight,2013,19(3):52-59
[32] 钟丹华,唐筱,舒斌,等. 载人飞船电源系统并网供电特性研究[J]. 航天器工程,2020,140(1):33-37
ZHONG D H,TANG X,SHU B,et al. Research on grid-connected power supply characteristics of manned spacecraft power system[J]. Spacecraft Engineering,2020,140(1):33-37
[33] 于磊. 空间电源系统并网供电技术研究[D]. 北京:北京交通大学,2018.
YU L. Research on grid-connected power supply technology of space power system [D]. Beijing: Beijing Jiaotong University,2018.
[34] HE D ,SHUAI Z,LEI Z,et al. A SiC JFET-based solid state circuit breaker with digitally controlled current-time profiles[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics,2019:7(3):1556 - 1565
[35] 孙怀义. 冗余设计技术与可靠性关系研究[J]. 仪器仪表学报,2007,28(11):2089-2092
SUN H Y. Research on the Relationship between redundancy design technology and reliability[J]. Journal of Instrumentation,2007,28(11):2089-2092
[36] 齐爽. 控制器双冗余设计与实现[D]. 哈尔滨:哈尔滨工业大学,2015.
QI S. Design and realization of dual redundancy controller [D]. Harbin: Harbin Institute of Technology,2015.
[37] 于萍,张洪华,李骥,等. 嫦娥五号着陆上升组合体GNC系统设计与实现[J]. 中国科学:技术科学,2021,51(7):763-777.
YU P,ZHANG H H,LI J,et al. Design and implementation of GNC system of lander and ascender module of Chang’e-5 spacecraft[J]. Sci SinTech,2021,51:763–777.
[38] 童杰文. 高可靠皮卫星综合电子系统研究[D]. 杭州:浙江大学,2014.
TONG J W. Research of high reliable composite electronic systems for pico-satellite [D]. Hangzhou: Zhejiang University,2014.
[39] 陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1-18
TAO F,LIU W R,ZHANG Y,et al. Digital twin five-dimensional model and ten major applications[J]. Computer Integrated Manufacturing System,2019,25(1):1-18
[40] 孙惠斌,颜建兴,魏小红,等. 数字孪生驱动的航空发动机装配技术[J]. 中国机械工程,2020,31(7):833-841.
SUN H B,YAN J X,WEI X H,et al. Aeroengine assembly technology driven by digital twin [J]. China Mechanical Engineering,2020,31(7):833-841.
[41] 刘蔚然,陶飞,程江峰,等. 数字孪生卫星:概念,关键技术及应用[J]. 计算机集成制造系统,2020,26(3):565-588
LIU W R,TAO F,CHENG J F,et al. Digital twin satellite:concept,key technology and application[J]. Computer Integrated Manufacturing System,2020,26(3):565-588
[42] 孟松鹤,叶雨玫,杨强,等. 数字孪生及其在航空航天中的应用[J]. 航空学报,2020,41(9):1-12.
MENG S H,YE Y M,YANG Q,et al. Digital twin and its application in aerospace [J]. Journal of Aeronautics,2020,41(9):1-12.
PDF(2965 KB)

Accesses

Citations

Detail

Sections
Recommended

/