[1] 秦旭东,龙乐豪,容易. 我国航天运输系统成就与展望[J]. 深空探测学报(中英文),2016,3(4):315-322
QIN X D,LONG L H,RONG Y. The achievement and future of China space transportation system[J]. Journal of Deep Space Exploration,2016,3(4):315-322
[2] 张振华. 日本运载火箭商用化计划[J]. 国外导弹与航天运载器,1987(6):87
[3] WINCHELL J W,POVTER J P,江雅芬. “德尔它”商用中型运载火箭[J]. 上海航天,1988(1):11-13
[4] 王永志. 长征运载火箭的系列化和商业化[J]. 中国航天,1989(9):10-14
[5] 蒋洁,王贺. 阿里安运载火箭产品研制和能力布局模式研究[J]. 中国航天,2017(6):21-25
[6] 张保庆,吴勤,张梦湉,等. 航天发展新动力商业航天[M]. 北京:中国宇航出版社,2017.
[7] 冯韶伟,范奎武,王月,等. 基于模块化设计的新一代运载火箭质量优化研究[J]. 导弹与航天运载技术,2015(5):9-13
FENG S W,FAN K W,WANG Y,et al. Research on the mass optimization of the new generation launch vehicle based on the modular design theory[J]. Missiles and Space Vehicles,2015(5):9-13
[8] 丁志强,周世杰,呼啸,等. 运载火箭产品去型号化工作模式研究与实践[J]. 航天工业管理,2018(9):30-32
[9] “卫星与网络”百度百家号. 发展商业航天,通往航天强国的必经之路:中国[EB/OL].(2019-07-25)[2020-03-06]. https://baijiahao.baidu.com/s?id=1639998668537399885.
[10] 尚育如. 以"三化"理念改进航天产品结构件设计的可生产性[J]. 航天工业管理,2005(7):21-25
[11] JOHN W, MARCIA D, ERIC H. Recent advances in near-net-shape fabrication of Al-Li alloy 2195 for launch vehicles [C]// 2007 National Space and Missile Materials Symposium. Colorado,USA: [s. n.], 2007.
[12] 李宝蓉,张丽娜. H-2B运载火箭贮箱制造技术与应用[J]. 航天制造技术,2008(5):39-41
LI B R,ZHANG L N. Manufacturing technology and application of H-2B rocket tank[J]. Aerospace Manufacturing Technology,2008(5):39-41
[13] TRENKLER A,DOGIGLI M,GLASER U.Spin forming of XXL bulkheads for large cryo tanks[C]//56th International Astronautical Congress,Materials and Structures Symposium. Fukuoka, Japan: [s. n.]: 2005.
[14] 王国庆,李曙光,吴会强. 重型火箭贮箱大型结构制造技术现状及发展分析[J]. 宇航材料工艺,2014(A01):1-6
WANG G Q,LI S G,WU H Q. Status and development analyses on manufacturing technologies for large scale structures of heavy-lift launch vehicle propellant tanks[J]. Aerospace Materials & Technology,2014(A01):1-6
[15] 苑世剑,刘伟,王国峰,等. 轻合金复杂薄壁构件流体压力成形技术新进展[J]. 上海航天,2019,36(2):31-37
YUAN S J,LIU W,WANG G F,et al. Advances in fluid pressure forming of complex light metal thin-walled components[J]. Aerospace Shanghai,2019,36(2):31-37
[16] 赖智鹏. 多时空脉冲强磁场金属板材电磁成形研究[D]. 武汉:华中科技大学,2017.
LAI Z P. Research on multi-space-time pulsed high magnetic field based electromagnetically sheet metal forming[D]. Wuhan:Huazhong University of Science and Technology,2017.
[17] 王海涛,陈乐乐,李继光,等. 数铣短壳壁板成形工艺试验研究[J]. 航空精密制造技术,2007,53(5):31-33
WANG H T,CHEN L L,LI J G,et al. Experimental study on forming process of CNC milling short-wallboard[J]. Aviation Precision Manufacturing Technology,2007,53(5):31-33
[18] 新商务. 首都航天机械公司蠕变成形技术填补航天空白[J]. 军民两用技术与产品,2015(15):29
[19] 丁新玲,郭博闻. 美国重型“太空发射系统”结构及制造技术[J]. 航天制造技术,2017(2):1-7
DING X L,GUO B W. Structure and manufacturing technology of Space Launch System[J]. Aerospace Manufacturing Technology,2017(2):1-7
[20] PATZELT A,MERINO J,HEGELS J,et al. Ariane 6:new aerostructures for the new European launcher[C]//The 68th International Astronautical Congress. Adelaide,Australia:IAC,2017.
[21] 李平岐,何巍,杨云飞. 液体运载火箭长细比设计研究[J]. 宇航总体技术,2019,3(3):16-22
LI P Q,HE W,YANG Y F. The research of liquid launch vehicle slenderness ratio design[J]. Astronautical Systems Engineering Technology,2019,3(3):16-22
[22] 王心清. 结构设计[M]. 北京:中国宇航出版社,2005.
[23] WHITEHEAD J C. Mass breakown of the saturn V[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Alabama, USA: AIAA, 2000.
[24] SZELINSKI B. Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank[J]. Acta Astronautica. 2012,81:200-213.
[25] 龙乐豪. CZ-3A系列运载火箭[J]. 导弹与航天运载技术,1999,239(3):1-69
LONG L H. CZ-3A launch vehicle series[J]. Missiles and Space Vehicles,1999,239(3):1-69
[26] 李照谦,南博华,何腾锋,等. 新一代运载火箭贮箱大温差泡沫夹层共底研制[J]. 宇航材料工艺,2016,46(4):68-72
LI Z Q,NAN B H,HE T F,et al. Development of large temperature difference foam sandwich co-bulkhead of cryogenic tank for new-generation launch vehicle[J]. Aerospace Materials & Technology,2016,46(4):68-72
[27] 姚君山,蔡益飞,李程刚. 运载火箭箭体结构制造技术发展与应用[J]. 航空制造技术,2007(10):36-40+42
[28] 于渊,臧建新,张奇野,等. 锥体壳段壁板自动钻铆技术研究及应用[J]. 航空精密制造技术,2020,56(1):40-43
YU Y,ZANG J X,ZHANG Q Y. Research and application of automatic drilling & riveting technology in cone segment panel[J]. Aviation Precision Manufacturing Technology,2020,56(1):40-43
[29] 侯东旭,臧建新,张伟,等. 运载火箭铆接舱段单元制造模式研究[J]. 航空精密制造技术,2019,55(2):18-21+26
HOU D X,ZANG J X,ZHANG W,et al. Research on cell production mode of launch vehicle riveting cabin[J]. Aviation Precision Manufacturing Technology,2019,55(2):18-21+26
[30] ZHANG S,QIAO F B,GUO L J. Friction stir spot welding technology and its application in aerospace industry[J]. Applied Mechanics and Materials,2012,232:200-204
[31] 吴晗玲,宋保永,苏晗,等. 猎鹰9运载火箭结构分系统设计特点分析与研究[J]. 飞航导弹,2017(9):1-4+59
[32] COLLIER C,AINSWORTH J,YARRINGTON P,et al. Ares Ⅴ interstage composite panel concept and ring frame spacing trade studies[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference. Orlando,FL:AIAA,2010.
[33] SEIBERT H F. Applications for PMI foams in aerospace sandwich structures[J]. Reinforced Plastics,2006,50(1):44-48
[34] KOBAYASHI M,SAKAI S,SHIMIZU R. Development of H-2A launch vehicle composite interstage structure[J]. Advanced Composite Materials,2001,10(2-3):247-253
[35] 黄诚,刘德博,吴会强,等. 我国航天运载器复合材料贮箱应用展望[J]. 沈阳航空航天大学学报,2016,33(2):27-35
HUNAG C,LIU D B,WU H Q,et al. Application prospects of composite propellant tanks in domestic launch vehicles[J]. Journal of Shenyang Aerospace University,2016,33(2):27-35
[36] VICKERS J.Composites Australia conference composite cryotank project structures for launch vehicles: NASA M13-2455[R]. [S. l.]: NASA, 2013.
[37] 黄诚. 航天运载器低温复合材料贮箱结构设计方法研究[D]. 长沙:国防科学技术大学,2017.
HUANG C. Structural design of cryogenic composite tank for space vehicle[D]. Changsha:National University of Defense Technology,2017.
[38] 中国运载火箭技术研究院.3.35米直径贮箱箱底一次成形技术水平国际先进:中国[P].2019-02-28].