Low-cost and Fast Manufacturing Technology for Commercial Liquid Rocket Structure

YANG Ruisheng, CHEN Youwei, WANG Jingchao, CONG Yan

PDF(741 KB)
PDF(741 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (1) : 70-79. DOI: 10.15982/j.issn.2096-9287.2021.20200008
Topic:The technology of new generation medium-lift launch vehicle

Low-cost and Fast Manufacturing Technology for Commercial Liquid Rocket Structure

  • YANG Ruisheng, CHEN Youwei, WANG Jingchao, CONG Yan
Author information +
History +

Abstract

With the gradual opening up and rapid development of the space launch application market, commercialization is an inevitable trend of the development of the launch vehicle. The rocket structure system is complex and involves a lot of manufacturing technology, which is an important factor restricting the production efficiency and cost of the rocket. How to realize the low cost and fast manufacturing of the rocket body structure has become an important research direction in the development of commercial aerospace. In this context, the application of manufacturing technology of key structural parts of liquid launch vehicle rocket body is systematically summarized, and the development direction of the commercial vehicle structure system is proposed, combined with the development of the LM-8 launch vehicle. The application of low cost and quick manufacturing technology of rocket structure is explored based on the integration of design and process, effectively improving the structure of the arrow product quality and production efficiency.

Keywords

liquid rocket / rocket structure / LM-8 / fast manufacturing

Cite this article

Download citation ▾
YANG Ruisheng, CHEN Youwei, WANG Jingchao, CONG Yan. Low-cost and Fast Manufacturing Technology for Commercial Liquid Rocket Structure. Journal of Deep Space Exploration, 2021, 8(1): 70‒79 https://doi.org/10.15982/j.issn.2096-9287.2021.20200008

References

[1] 秦旭东,龙乐豪,容易. 我国航天运输系统成就与展望[J]. 深空探测学报(中英文),2016,3(4):315-322
QIN X D,LONG L H,RONG Y. The achievement and future of China space transportation system[J]. Journal of Deep Space Exploration,2016,3(4):315-322
[2] 张振华. 日本运载火箭商用化计划[J]. 国外导弹与航天运载器,1987(6):87
[3] WINCHELL J W,POVTER J P,江雅芬. “德尔它”商用中型运载火箭[J]. 上海航天,1988(1):11-13
[4] 王永志. 长征运载火箭的系列化和商业化[J]. 中国航天,1989(9):10-14
[5] 蒋洁,王贺. 阿里安运载火箭产品研制和能力布局模式研究[J]. 中国航天,2017(6):21-25
[6] 张保庆,吴勤,张梦湉,等. 航天发展新动力商业航天[M]. 北京:中国宇航出版社,2017.
[7] 冯韶伟,范奎武,王月,等. 基于模块化设计的新一代运载火箭质量优化研究[J]. 导弹与航天运载技术,2015(5):9-13
FENG S W,FAN K W,WANG Y,et al. Research on the mass optimization of the new generation launch vehicle based on the modular design theory[J]. Missiles and Space Vehicles,2015(5):9-13
[8] 丁志强,周世杰,呼啸,等. 运载火箭产品去型号化工作模式研究与实践[J]. 航天工业管理,2018(9):30-32
[9] “卫星与网络”百度百家号. 发展商业航天,通往航天强国的必经之路:中国[EB/OL].(2019-07-25)[2020-03-06]. https://baijiahao.baidu.com/s?id=1639998668537399885.
[10] 尚育如. 以"三化"理念改进航天产品结构件设计的可生产性[J]. 航天工业管理,2005(7):21-25
[11] JOHN W, MARCIA D, ERIC H. Recent advances in near-net-shape fabrication of Al-Li alloy 2195 for launch vehicles [C]// 2007 National Space and Missile Materials Symposium. Colorado,USA: [s. n.], 2007.
[12] 李宝蓉,张丽娜. H-2B运载火箭贮箱制造技术与应用[J]. 航天制造技术,2008(5):39-41
LI B R,ZHANG L N. Manufacturing technology and application of H-2B rocket tank[J]. Aerospace Manufacturing Technology,2008(5):39-41
[13] TRENKLER A,DOGIGLI M,GLASER U.Spin forming of XXL bulkheads for large cryo tanks[C]//56th International Astronautical Congress,Materials and Structures Symposium. Fukuoka, Japan: [s. n.]: 2005.
[14] 王国庆,李曙光,吴会强. 重型火箭贮箱大型结构制造技术现状及发展分析[J]. 宇航材料工艺,2014(A01):1-6
WANG G Q,LI S G,WU H Q. Status and development analyses on manufacturing technologies for large scale structures of heavy-lift launch vehicle propellant tanks[J]. Aerospace Materials & Technology,2014(A01):1-6
[15] 苑世剑,刘伟,王国峰,等. 轻合金复杂薄壁构件流体压力成形技术新进展[J]. 上海航天,2019,36(2):31-37
YUAN S J,LIU W,WANG G F,et al. Advances in fluid pressure forming of complex light metal thin-walled components[J]. Aerospace Shanghai,2019,36(2):31-37
[16] 赖智鹏. 多时空脉冲强磁场金属板材电磁成形研究[D]. 武汉:华中科技大学,2017.
LAI Z P. Research on multi-space-time pulsed high magnetic field based electromagnetically sheet metal forming[D]. Wuhan:Huazhong University of Science and Technology,2017.
[17] 王海涛,陈乐乐,李继光,等. 数铣短壳壁板成形工艺试验研究[J]. 航空精密制造技术,2007,53(5):31-33
WANG H T,CHEN L L,LI J G,et al. Experimental study on forming process of CNC milling short-wallboard[J]. Aviation Precision Manufacturing Technology,2007,53(5):31-33
[18] 新商务. 首都航天机械公司蠕变成形技术填补航天空白[J]. 军民两用技术与产品,2015(15):29
[19] 丁新玲,郭博闻. 美国重型“太空发射系统”结构及制造技术[J]. 航天制造技术,2017(2):1-7
DING X L,GUO B W. Structure and manufacturing technology of Space Launch System[J]. Aerospace Manufacturing Technology,2017(2):1-7
[20] PATZELT A,MERINO J,HEGELS J,et al. Ariane 6:new aerostructures for the new European launcher[C]//The 68th International Astronautical Congress. Adelaide,Australia:IAC,2017.
[21] 李平岐,何巍,杨云飞. 液体运载火箭长细比设计研究[J]. 宇航总体技术,2019,3(3):16-22
LI P Q,HE W,YANG Y F. The research of liquid launch vehicle slenderness ratio design[J]. Astronautical Systems Engineering Technology,2019,3(3):16-22
[22] 王心清. 结构设计[M]. 北京:中国宇航出版社,2005.
[23] WHITEHEAD J C. Mass breakown of the saturn V[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Alabama, USA: AIAA, 2000.
[24] SZELINSKI B. Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank[J]. Acta Astronautica. 2012,81:200-213.
[25] 龙乐豪. CZ-3A系列运载火箭[J]. 导弹与航天运载技术,1999,239(3):1-69
LONG L H. CZ-3A launch vehicle series[J]. Missiles and Space Vehicles,1999,239(3):1-69
[26] 李照谦,南博华,何腾锋,等. 新一代运载火箭贮箱大温差泡沫夹层共底研制[J]. 宇航材料工艺,2016,46(4):68-72
LI Z Q,NAN B H,HE T F,et al. Development of large temperature difference foam sandwich co-bulkhead of cryogenic tank for new-generation launch vehicle[J]. Aerospace Materials & Technology,2016,46(4):68-72
[27] 姚君山,蔡益飞,李程刚. 运载火箭箭体结构制造技术发展与应用[J]. 航空制造技术,2007(10):36-40+42
[28] 于渊,臧建新,张奇野,等. 锥体壳段壁板自动钻铆技术研究及应用[J]. 航空精密制造技术,2020,56(1):40-43
YU Y,ZANG J X,ZHANG Q Y. Research and application of automatic drilling & riveting technology in cone segment panel[J]. Aviation Precision Manufacturing Technology,2020,56(1):40-43
[29] 侯东旭,臧建新,张伟,等. 运载火箭铆接舱段单元制造模式研究[J]. 航空精密制造技术,2019,55(2):18-21+26
HOU D X,ZANG J X,ZHANG W,et al. Research on cell production mode of launch vehicle riveting cabin[J]. Aviation Precision Manufacturing Technology,2019,55(2):18-21+26
[30] ZHANG S,QIAO F B,GUO L J. Friction stir spot welding technology and its application in aerospace industry[J]. Applied Mechanics and Materials,2012,232:200-204
[31] 吴晗玲,宋保永,苏晗,等. 猎鹰9运载火箭结构分系统设计特点分析与研究[J]. 飞航导弹,2017(9):1-4+59
[32] COLLIER C,AINSWORTH J,YARRINGTON P,et al. Ares Ⅴ interstage composite panel concept and ring frame spacing trade studies[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference. Orlando,FL:AIAA,2010.
[33] SEIBERT H F. Applications for PMI foams in aerospace sandwich structures[J]. Reinforced Plastics,2006,50(1):44-48
[34] KOBAYASHI M,SAKAI S,SHIMIZU R. Development of H-2A launch vehicle composite interstage structure[J]. Advanced Composite Materials,2001,10(2-3):247-253
[35] 黄诚,刘德博,吴会强,等. 我国航天运载器复合材料贮箱应用展望[J]. 沈阳航空航天大学学报,2016,33(2):27-35
HUNAG C,LIU D B,WU H Q,et al. Application prospects of composite propellant tanks in domestic launch vehicles[J]. Journal of Shenyang Aerospace University,2016,33(2):27-35
[36] VICKERS J.Composites Australia conference composite cryotank project structures for launch vehicles: NASA M13-2455[R]. [S. l.]: NASA, 2013.
[37] 黄诚. 航天运载器低温复合材料贮箱结构设计方法研究[D]. 长沙:国防科学技术大学,2017.
HUANG C. Structural design of cryogenic composite tank for space vehicle[D]. Changsha:National University of Defense Technology,2017.
[38] 中国运载火箭技术研究院.3.35米直径贮箱箱底一次成形技术水平国际先进:中国[P].2019-02-28].
PDF(741 KB)

Accesses

Citations

Detail

Sections
Recommended

/