[1] POO M M. Mars exploration on the move[J]. National Science Review,2020,7(9):1413-1418
[2] GRIP H F,JOHNSON W,MALPICA C,et al. Modeling and identification of hover flight dynamics for NASA's Mars helicopter[J]. Journal of Guidance,Control,and Dynamics,2020,43(2):179-194
[3] 房建成,宁晓琳,马辛,等. 深空探测器自主天文导航技术综述[J]. 飞控与探测,2018,1(1):1-15
FANG J C,NING X L,MA X,et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control & Detection,2018,1(1):1-15
[4] ORTORE E,CINELLI M,CIRCI C. A ground track-based approach to design satellite constellations[J]. Aerospace Science and Technology,2017,69:458-64
[5] 宝音贺西,马鹏斌. 火星探测器自主导航方法综述[J]. 飞控与探测,2018,1(1):34-40
BAOYIN H X,MA P B. Overview of autonomous navigation method for Mars probe[J]. Flight Control & Detection,2018,1(1):34-40
[6] LIU J,NING X L,MA X,et al. Geometry error analysis in solar Doppler difference navigation for the capture phase[J]. IEEE Transactions on Aerospace and Electronic Systems,2019,55(5):2556-2567
[7] 宁晓琳,李卓,黄盼盼,等. 火星探测器捕获段自适应卡尔曼滤波方法[J]. 深空探测学报(中英文),2016,3(3):237-245
NING X L,LI Z,HUANG P P,et al. An adaptive Kalman filter for Mars spacecraft acquisitionphase[J]. Journal of Deep Space Exploration,2016,3(3):237-245
[8] 于正湜,崔平远. 行星着陆自主导航与制导控制研究现状与趋势[J]. 深空探测学报(中英文),2016,3(4):345-355
YU Z S,CUI P Y. Research status and developing trend of the autonomous navigation,guidance,and control for planetary landing[J]. Journal of Deep Space Exploration,2016,3(4):345-355
[9] 王大轶,黄翔宇. 深空探测转移段光学成像测量自主导航及仿真验证技术[J]. 控制理论与应用,2014,31(12):1714-1722
WANG D Y, HUANG X Y. Autonomous optical navigation for deep space transfer phase and its simulation verification[J]. Control Theory & Applications,2014,31(12):1714-1722
[10] 马辛,宁晓琳,刘劲,等. 一种平面约束辅助测量的深空探测器自主天文导航方法[J]. 深空探测学报(中英文),2019,6(3):293-300
MA X,NING X L,LIU J,et al. An autonomous celestial navigation method for deep space probe based on coplanar constraint aided measurement[J]. Journal of Deep Space Exploration,2019,6(3):293-300
[11] NING X,GUI M,ZHANG J,et al. Impact of the pulsar's direction on CNS/XNAV integrated navigation[J]. IEEE Transactions on Aerospace and Electronic Systems,2017,53(6):3043-3055
[12] NING X L,GUI M Z,FANG J C,et al. A novel autonomous celestial navigation method using solar oscillation time delay measurement[J]. IEEE Transactions on Aerospace and Electronic Systems,2018,54(3):1392-1403
[13] 宁晓琳,桂明臻,孙晓函,等. 一种基于太阳震荡时间延迟量测的自主天文导航方法[J]. 深空探测学报(中英文),2019,6(1):88-95
NING X L,GUI M Z,SUN X H,et al. A novel autonomous celestial navigation method using solar oscillation time delay measurement[J]. Journal of Deep Space Exploration,2019,6(1):88-95
[14] NING X L,GUI M Z,ZHANG J,et al. Solar oscillation time delay measurement assisted celestial navigation method[J]. Acta Astronautica,2017,134:152-158
[15] JACOBSON R A,LAINEY V. Martian satellite orbits and ephemerides[J]. Planetary and Space Science,2014,102:35-44
[16] 桂明臻,宁晓琳,芦佳振,等. 考虑星历误差的天文测角/时间延迟量测组合导航方法[J]. 飞控与探测,2018,41(1):268-275
GUI L Z,NING X L,LU J Z,et al. Ephemeris corrections in celestial/pulsar navigation using time differential and ephemeris estimation[J]. Flight Control & Detection,2018,41(1):268-275
[17] NING X L,WANG F,FANG J C. Implicit UKF and its observability analysis of satellite stellar refraction navigation system[J]. Aerospace Science and Technology,2016,54:49-58
[18] LI L,YU D D,XIA Y Q,et al. Event-triggered UKF for nonlinear dynamic systems with packet dropout[J]. International Journal of Robust and Nonlinear Control,2017,27(18):4208-4226
[19] KOOSHKBAGHI M,MARQUEZ H J. Event-triggered discrete-time cubature kalman filter for nonlinear dynamical systems with packet dropout[J]. IEEE Transactions on Automatic Control,2020,65(5):2278-2285
[20] ZHANG H,ZHOU X,WANG Z Q,et al. Maneuvering target tracking with event-based mixture Kalman filter in mobile sensor networks[J]. IEEE Transactions on Cybernetics,2020,50(10):4346-4357