A Fast Star Angle/Time Delay Measurement Integrated Navigation Method

GUI Mingzhen1, NING Xiaolin2, MA Xin2, YE Wen3

PDF(1510 KB)
PDF(1510 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (2) : 190-197. DOI: 10.15982/j.issn.2096-9287.2021.20200080
Article
Article

A Fast Star Angle/Time Delay Measurement Integrated Navigation Method

  • GUI Mingzhen1, NING Xiaolin2, MA Xin2, YE Wen3
Author information +
History +

Abstract

The time delay based on solar oscillation is a new type of celestial navigation measurement. Combined with the star angle measurement, it can improve the navigation performance. However, the ephemeris error of Phobos will reduce the navigation accuracy. To solve this problem, a fast star angle/time delay measurement integrated navigation method is proposed. The position and velocity of Phobos are estimated online to suppress the effect of Phobos ephemeris error on the estimation accuracy of star angle/time delay measurement integrated navigation. The amplitude of the innovation is tested by setting a threshold,and the implicit unscented Kalman filter based on time delay measurement is selectively performed,which greatly improves the real-time performance of navigation. Simulation results show that the proposed method can significantly improve the real-time performance of navigation while ensuring navigation accuracy.

Keywords

deep space exploration / celestial navigation / integrated navigation / Solar oscillation;time delay measurement / ephemeris error

Cite this article

Download citation ▾
GUI Mingzhen, NING Xiaolin, MA Xin, YE Wen. A Fast Star Angle/Time Delay Measurement Integrated Navigation Method. Journal of Deep Space Exploration, 2021, 8(2): 190‒197 https://doi.org/10.15982/j.issn.2096-9287.2021.20200080

References

[1] POO M M. Mars exploration on the move[J]. National Science Review,2020,7(9):1413-1418
[2] GRIP H F,JOHNSON W,MALPICA C,et al. Modeling and identification of hover flight dynamics for NASA's Mars helicopter[J]. Journal of Guidance,Control,and Dynamics,2020,43(2):179-194
[3] 房建成,宁晓琳,马辛,等. 深空探测器自主天文导航技术综述[J]. 飞控与探测,2018,1(1):1-15
FANG J C,NING X L,MA X,et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control & Detection,2018,1(1):1-15
[4] ORTORE E,CINELLI M,CIRCI C. A ground track-based approach to design satellite constellations[J]. Aerospace Science and Technology,2017,69:458-64
[5] 宝音贺西,马鹏斌. 火星探测器自主导航方法综述[J]. 飞控与探测,2018,1(1):34-40
BAOYIN H X,MA P B. Overview of autonomous navigation method for Mars probe[J]. Flight Control & Detection,2018,1(1):34-40
[6] LIU J,NING X L,MA X,et al. Geometry error analysis in solar Doppler difference navigation for the capture phase[J]. IEEE Transactions on Aerospace and Electronic Systems,2019,55(5):2556-2567
[7] 宁晓琳,李卓,黄盼盼,等. 火星探测器捕获段自适应卡尔曼滤波方法[J]. 深空探测学报(中英文),2016,3(3):237-245
NING X L,LI Z,HUANG P P,et al. An adaptive Kalman filter for Mars spacecraft acquisitionphase[J]. Journal of Deep Space Exploration,2016,3(3):237-245
[8] 于正湜,崔平远. 行星着陆自主导航与制导控制研究现状与趋势[J]. 深空探测学报(中英文),2016,3(4):345-355
YU Z S,CUI P Y. Research status and developing trend of the autonomous navigation,guidance,and control for planetary landing[J]. Journal of Deep Space Exploration,2016,3(4):345-355
[9] 王大轶,黄翔宇. 深空探测转移段光学成像测量自主导航及仿真验证技术[J]. 控制理论与应用,2014,31(12):1714-1722
WANG D Y, HUANG X Y. Autonomous optical navigation for deep space transfer phase and its simulation verification[J]. Control Theory & Applications,2014,31(12):1714-1722
[10] 马辛,宁晓琳,刘劲,等. 一种平面约束辅助测量的深空探测器自主天文导航方法[J]. 深空探测学报(中英文),2019,6(3):293-300
MA X,NING X L,LIU J,et al. An autonomous celestial navigation method for deep space probe based on coplanar constraint aided measurement[J]. Journal of Deep Space Exploration,2019,6(3):293-300
[11] NING X,GUI M,ZHANG J,et al. Impact of the pulsar's direction on CNS/XNAV integrated navigation[J]. IEEE Transactions on Aerospace and Electronic Systems,2017,53(6):3043-3055
[12] NING X L,GUI M Z,FANG J C,et al. A novel autonomous celestial navigation method using solar oscillation time delay measurement[J]. IEEE Transactions on Aerospace and Electronic Systems,2018,54(3):1392-1403
[13] 宁晓琳,桂明臻,孙晓函,等. 一种基于太阳震荡时间延迟量测的自主天文导航方法[J]. 深空探测学报(中英文),2019,6(1):88-95
NING X L,GUI M Z,SUN X H,et al. A novel autonomous celestial navigation method using solar oscillation time delay measurement[J]. Journal of Deep Space Exploration,2019,6(1):88-95
[14] NING X L,GUI M Z,ZHANG J,et al. Solar oscillation time delay measurement assisted celestial navigation method[J]. Acta Astronautica,2017,134:152-158
[15] JACOBSON R A,LAINEY V. Martian satellite orbits and ephemerides[J]. Planetary and Space Science,2014,102:35-44
[16] 桂明臻,宁晓琳,芦佳振,等. 考虑星历误差的天文测角/时间延迟量测组合导航方法[J]. 飞控与探测,2018,41(1):268-275
GUI L Z,NING X L,LU J Z,et al. Ephemeris corrections in celestial/pulsar navigation using time differential and ephemeris estimation[J]. Flight Control & Detection,2018,41(1):268-275
[17] NING X L,WANG F,FANG J C. Implicit UKF and its observability analysis of satellite stellar refraction navigation system[J]. Aerospace Science and Technology,2016,54:49-58
[18] LI L,YU D D,XIA Y Q,et al. Event-triggered UKF for nonlinear dynamic systems with packet dropout[J]. International Journal of Robust and Nonlinear Control,2017,27(18):4208-4226
[19] KOOSHKBAGHI M,MARQUEZ H J. Event-triggered discrete-time cubature kalman filter for nonlinear dynamical systems with packet dropout[J]. IEEE Transactions on Automatic Control,2020,65(5):2278-2285
[20] ZHANG H,ZHOU X,WANG Z Q,et al. Maneuvering target tracking with event-based mixture Kalman filter in mobile sensor networks[J]. IEEE Transactions on Cybernetics,2020,50(10):4346-4357
PDF(1510 KB)

Accesses

Citations

Detail

Sections
Recommended

/