Topic:Sampling and Detection Technology of Icy Lunar Regolith

Research Progress of Penetration and In-Situ Detection of Planetary Regolith Physical Properties

Expand
  • 1. School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,China;
    2. Sichuan Academy of Aerospace Technology,Chengdu 610100,China;
    3. The National Center for Nanoscience and Technology,Beijing 100190,China;
    4. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China;
    5. Beijing Institute of Spacecraft System Engineering,Beijing 100094,China;
    6. China Academy of Space Technology,Beijing 100094,China

Received date: 06 Nov 2019

Revised date: 06 Jan 2022

Published date: 20 May 2022

Abstract

Kinetic penetration is an effective method for in-situ detection of planetary regolith,especially for geological structure and physical and chemical properties. The research status and development trends of the penetrating-type in-situ detection of planetary profiles are investigated and its critical techniques and solutions are summarized. According to China’s general plans of future deep space exploration and critical technology requirements,penetrating-type in-situ investigation perspectives are put forward for lunar,Mars,and asteroid respectively,which will provide new methods and new schemes for the project argumentation and key technology research of the extraterrestrial object exploration project in China.

Cite this article

JIANG Shengyuan, ZHANG Weiwei, YANG Yubin, LI Honglang, HE Huaiyu, ZHANG He, HUANG Jiangchuan, DENG Zongquan . Research Progress of Penetration and In-Situ Detection of Planetary Regolith Physical Properties[J]. Journal of Deep Space Exploration, 2022 , 9(2) : 114 -122 . DOI: 10.15982/j.issn.2096-9287.2022.20191106001

References

[1] ZACNY K,BAR-COHEN Y,BRENNAN M,et al. Drilling systems for extraterrestrial subsurface exploration[J]. Astrobiology,2008,8(3):665-706
[2] CARRIER W D,OLHOEFT G R,MENDELL W. Physical properties of the lunar surface[M]. New York:Cambridge University Press,1991.
[3] GROMOV V. Physical and mechanical properties of lunar and planetary soils[J]. Earth Moon and Planets,1998,80(1-3):51-72
[4] BONITZ R G,SHIRAISHI L,ROBINSON M,et al. NASA Mars 2007 Phoenix lander robotic arm and icy soil acquisition device[J]. Journal of Geophysical Research Atmospheres,2009,113(E00A01):1-10
[5] TANG J,QUAN Q,JIANG S,et al. Experimental investigation on flowing characteristics of flexible tube coring in lunar sampling missions[J]. Powder Technology,2018,326:16-24
[6] QUAN Q,TANG J,YUAN F,et al. Drilling load modeling and validation based on the filling rate of auger flute in planetary sampling[J]. Chinese Journal of Aeronautics,2017,30(1):434-446
[7] ZHANG T,DING X. Drilling forces model for lunar regolith exploration and experimental validation[J]. Acta Astronautica,2017,131:190-203
[8] YU A S,KREMNEV R S. Mars-96 mission:Mars exploration with the use of penetrators[J]. Planetary and Space Science,1998,46(s11-12):1689-1696
[9] ALBEE A,BATTEL S,BRACE R,et al. Report on the loss of the Mars Polar Lander and Deep Space 2 missions[D]. USA:NASA,2000.
[10] MIZUTANI H,FUJIMURA A,TANAKA S,et al. Lunar-A mission:outline and current status[J]. Journal of Earth System Science,2005,114(6):763-768
[11] SHIRAISHI H,TANAKA S,FUJIMURA A,et al. The present status of the japanese penetrator mission:Lunar-A[J]. Advances in Space Research,2008,42(2):386-393
[12] GAO Y,PHIPPS A,TAYLOR M,et al. Lunar science with affordable small spacecraft technologies:MoonLITE and Moonraker[J]. Planetary and Space Science,2008,56(3-4):368-377
[13] SKULINOVA M,ZHENG W,HU Y,et al. Micro-penetrator for Canadian planetary exploration[J]. World Academy of Science,Engineering and Technology,2011,79:475-482
[14] 周必磊,王强,尤伟,等. 月球穿透器与月震仪组网探测研究[J]. 上海航天,2012,29(5):29-35
ZHOU B L,WANG Q,YOU W,et al. Study of lunar penetrator and seismic network exploration[J]. Aerospace Shanghai,2012,29(5):29-35
[15] 陈颖,周璐,王立. 一种火星多模式组合探测任务设想[J]. 深空探测学报,2014,1(2):156-160
CHEN Y,ZHOU L,WANG L. A conception of Mars multi-mode combination exploration mission[J]. Journal of Deep Space Exploration,2014,1(2):156-160
[16] SHUAI L,LUCEY P G,MILLIKEN R E,et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences,2018,115, 36:8907-8912
[17] GAO Y,PHIPPS A,TAYLOR M,et al. UK lunar science missions:MoonLITE & Moonraker[C]//Proc. DGLR Int. Symposium to Moon and Beyond. Bremen,Germany:[s.n.], 2007.
[18] SURKOV Y,KREMNEV R. Mars-96 mission:Mars exploration with the use of penetrators[J]. Planetary and Space Science,1998,46(11-12):1689-1696
[19] HARRI A,PICHKADZE K,ZELENY L,et al. The MetNet vehicle:a lander to deploy environmental stations for local and global investigations of Mars[J]. Geoscientific Instrumentation Methods and Data Systems,2017,6(1):103-124
[20] SMREKAR S,CATLING D,LORENZ R,et al. Deep Space 2:the Mars microprobe mission[J]. Journal of Geophysical Research:Planets,1999,104(E11):27013
[21] WU R,ROBERTS P C,SOUTIS C,et al. Flexible heat shields deployed by centrifugal force[J]. Acta Astronautica,2018,152:78-87
[22] WU R,ROBERTS P C,SOUTIS C,et al. Downrange manoeuvre and oscillation suppression of a self-regulating centrifugally deployed flexible heat shield using a controlled reaction wheel[J]. Acta Astronautica,2019,161:415-424
[23] HIROI T,PIETERS C M,ZOLENSKY M E,et al. Evidence of thermal metamorphism on the C,G,B,and F asteroids[J]. Science,1993,261(5124):1016-1018
[24] GROTT M,KNOLLENBERG J,HAMM M,et al. Low thermal conductivity boulder with high porosity identified on C-type asteroid(162173)Ryugu[J]. Nature Astronomy,2019,3(11):971-976
[25] NOLAN M C,MAGRI C,HOWELL E S,et al. Shape model and surface properties of the OSIRIS-REx target Asteroid(101955)Bennu from radar and lightcurve observations[J]. Icarus,2013,226(1):629-640
[26] HEARN A,MICHAEL F. Deep impact:excavating comet tempel 1[J]. Proceedings of the International Astronomical Union,2006,2(14):325-326
[27] ARAKAWA M,WADA K,SAIKI T,et al. Scientific objectives of Small Carry-on Impactor(SCI)and Deployable Camera 3 Digital(DCAM3-D):observation of an ejecta curtain and a crater formed on the surface of ryugu by an artificial high-velocity impact[J]. Space Science Reviews,2017,208(1-4):187-212
[28] ULAMEC S,BIELE J. Landing on small bodies:from the Rosetta lander to MASCOT and beyond[J]. Acta Astronautica,2014:460-466
[29] KARGL G,MACHER W,K?MLE N I,et al. Accelerometry measurements using the Rosetta Lander's anchoring harpoon:experimental set-up,data reduction and signal analysis[J]. Planetary & Space Science,2001,49(5):425-435
Outlines

/