Research on Micro Newtonian Electrospray Thruster with Wide Thrust Range

HUANG Xiaobo, SUO Xiaochen, YANG Fan, WANG Dian, JIA Hongyu, LI Jiahui, ZHANG Wensheng, SONG Peiyi

PDF(1963 KB)
PDF(1963 KB)
Journal of Deep Space Exploration ›› 2024, Vol. 11 ›› Issue (2) : 141-150. DOI: 10.15982/j.issn.2096-9287.2024.20230157
Topic: Power and Propulsion Technology for Deep Space

Research on Micro Newtonian Electrospray Thruster with Wide Thrust Range

  • HUANG Xiaobo, SUO Xiaochen, YANG Fan, WANG Dian, JIA Hongyu, LI Jiahui, ZHANG Wensheng, SONG Peiyi
Author information +
History +

Abstract

In light of the demands for a micro-Newtonian level field emission electric thruster with wide,stable,precise, rapid,and persistent characteristics due to the drag-free control on satellites in space gravity wave detection missions,the mutual limitations between adjustable width range,resolution,and thrust noise should be broken through.Based on the principle of field emission thrust generation,and high-precision single pendulum to calibrate the accuracy of the model was uesd. Based on this thrust model,a flow and voltage-based active regulation strategy was established to control thrust,and a thrust feedback control strategy was proposed to maintain low thrust noise levels in a wider thrust range,accroding to the requirements for thrust control resolution and response speed. Finally,performance characterization was carried out on the developed prototype of the thruster principle,achieving 0.86-83.54 μN level,thrust resolution less than 0.1 μN,<0.1 μN/Hz1/2,thrust noise in the millihertz frequency band less than 0.1 μN and less than 10 ms for thrust response time with constant flow.

Keywords

drag-free satellite / electrospray thruster / micro-thrust model / thrust measurement / feedback control

Cite this article

Download citation ▾
HUANG Xiaobo, SUO Xiaochen, YANG Fan, WANG Dian, JIA Hongyu, LI Jiahui, ZHANG Wensheng, SONG Peiyi. Research on Micro Newtonian Electrospray Thruster with Wide Thrust Range. Journal of Deep Space Exploration, 2024, 11(2): 141‒150 https://doi.org/10.15982/j.issn.2096-9287.2024.20230157

References

[1] LUO J,CHEN L S,DUAN H Z,et al. TianQin:a space-borne gravitational wave detector[J]. Classical and Quantum Gravity,2016,33(3):035010.
[2] AMARO-SEOANE P, AUDLEY H, BABAK S, et al. Laser interferometer space antenna[EB/OL]. (2017-2-23)[2023-10-31]. https://arxiv.org/abs/1702.00786.
[3] SATO S C,KAWAMURA S,ANDO A,et al. The status of DECIGO[C]//Proceedings of 11th International LISA Symposium. Bristol :IOP Publishing,2017.
[4] MEI J W,BAI Y Z,BAO J H ,et al. The TianQin project:current progress on science and technology[J]. Progress of Theoretical and Experimental Physics,2020,2021(5):059201.
[5] LANGE B. The drag-free satellite[J]. AIAA Journal,1964,2(9):1590-1606.
[6] DEBRA D B,CONKLIN J W. Measurement of drag and its cancellation[J]. Classical and Quantum Gravity,2011,28(9):094015.
[7] DEBRA D B. Drag-free control for fundamental physics missions[J]. Advances in Space Research,2003,32(7):1221-1226.
[8] LUO J,BAI Y Z,CAI L,et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity,2020,37(18):185013.
[9] TAYLOR G. Disintegration of water drops in an electric field[J]. Proceedings of the Royal Society of London,1964,280(1382):383-397.
[10] TANG K Q,GOMEZ A. Monodisperse electrosprays of low electricconductivity liquids in the cone-jet mode[J]. Journal of Colloid Interface Science,1996,184(2):500-511.
[11] GAÑÁN-CALVO A M. Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying[J]. Physical Review Letters,1997,79(2):217-220.
[12] GAMERO-CASTAÑO M. The expansion of collo id thruster beams and its dependence on emission temperature[C]//Proceedings of 49th AIAA/ASME/SAE ASEE Joint Propulsion Conference. San Jose,CA:AIAA,2013.
[13] ANDERSON G,ANDERSON J,ANDERSON M,et al. Experimental results from the ST7 mission on LISA Pathfinder[J]. Physical Review D,2018,98(10):102005.
[14] CLOUPEAU M,PRUNET-FOCH B. Electrohydrodynamic spraying functioning modes:a critical review[J]. Journal of Aerosol Science,1994,25(6):1021-1036.
[15] DE LA MORA J F ,LOSCERTALES G I. The current emitted by highly conducting Taylor cones[J]. Journal of Fluid Mechanics,1994,260(1):155-184.
[16] ZIEMER J K. Performance of electrospray thruster[C]//Proceedings of 31st International Electric Propulsion Conference. Ann Arbor,Michigan:Electric Rocket Propulsion Society,2009.
[17] 景骢. 我国离子液体微推进空间验证取得成功[J]. 太空探索,2019(7):1.
[18] SI B Q T,BYUN D,LEE S. Experimental and theoretical study of a cone-jet for an electrospray microthruster considering the interference effect in an array of nozzles[J]. Journal of Aerosol Science,2007,38(9):924-934.
[19] COURTNEY D G,LI H Q,LOZANO P. Emission measurements from planar arrays of porous ionic liquid ion sources[J]. Journal of Physics D:Applied Physics,2012,45(48):485203.
[20] VELÁSQUEZ-GARCÍA L F,AKINWANDE A I. A mems CNT-based neutralizer for micro-propulsion applications[C]//Proceedings of 30th International Electric Propulsion Conference. Florence:IEPC,2007.
[21] ZIEMER J K,RANDOLPH T M,FRANKLIN G W,et al. Colloid micro-newton thrusters for the space technology 7 mission[C]//Proceedings of 2010 IEEE Aerospace Conference. Big Sky,MT,USA:IEEE,2010.
[22] HUANG C,JIANLING L I,MU L I. Performance measurement and evaluation of an ionic liquid electrospray thruster[J]. Chinese Journal of Aeronautics,2023(3):1-15.
[23] HRUBY V,GAMERO-CASTAÑO M,FALKOS P,et al. Micro newton colloid thruster system development[C]//Proceedings of 27th International Electric Propulsion Conference. Pasadena :IEPC,2001.
[24] XU H,GAO Y,MAO Q B,et al. A compound pendulum for thrust measurement of micro-Newton thruster[J]. Review of Scientific Instruments,2022,93(6):064501.
[25] 黎卿. 扭秤周期法测 G 试验中的系统误差研究[D]. 武汉:华中科技大学,2014.
[26] ZHANG K,KUANG S,SUO X,et al. Analysis of beam currents under an oscillating cone-jet mode for developing high-precision electrospray thrusters[J]. Journal of Applied Physics,2022,131(9):094501.
[27] AUGER F,FLANDRIN P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing,1995,43(5):1068-1089.
PDF(1963 KB)

Accesses

Citations

Detail

Sections
Recommended

/