Analysis of Cislunar DRO Orbit Determination Accuracy Using Earth-Based Simulated Observations

HUANG Yidan1, HUANG Yong1,2,3,4, FAN Min5, LI Peijia1,3,4

PDF(1405 KB)
PDF(1405 KB)
Journal of Deep Space Exploration ›› 2024, Vol. 11 ›› Issue (4) : 405-413. DOI: 10.15982/j.issn.2096-9287.2024.20230099
Research Papers

Analysis of Cislunar DRO Orbit Determination Accuracy Using Earth-Based Simulated Observations

  • HUANG Yidan1, HUANG Yong1,2,3,4, FAN Min5, LI Peijia1,3,4
Author information +
History +

Abstract

Based on the existing tracking and measuring conditions of China’s deep space exploration missions, the orbit determination accuracy of the DRO probe was simulated and analyzed. For the Cislunar space DRO exploration, the simulation adopted batch processing orbit determination method, selected celestial bodies centered on the Earth for orbit integration, and increased non-spherical gravitational perturbation of the moon. Under the current measurement conditions, the position and velocity accuracy of 2-day short-arc orbit determination using only range tracking data were the order of km and better than 3 cm/s respectively; for 7-day predictions, the maximum differences in the position and velocity are the order of ten kilometers and 6 cm/s respectively. When using ranging data combined with VLBI data, the position and velocity accuracy were the order of hundreds of meters and less than 0.4 cm/s respectively; for 7-day predictions, the maximum differences in the position and velocity were the order of kilometers and 2 cm/s respectively, which shows that VLBI data significantly improved the accuracy of short-arc orbit determination and prediction. Moreover, the position and velocity accuracy were better than 1 km and 1cm/s respectively when using 5-day long-arc range tracking data. For 7-day predictions, the maximum differences in the position and velocity were less than 2 km and 1cm/s respectively. This shows that an increase of ranging data significantly contributes to the accuracy of orbit determination and prediction for DRO.

Keywords

cislunar / Distant Retrograde Orbit (DRO) / Very Long Baseline Interferometry (VLBI) / orbit determination / orbit prediction

Cite this article

Download citation ▾
HUANG Yidan, HUANG Yong, FAN Min, LI Peijia. Analysis of Cislunar DRO Orbit Determination Accuracy Using Earth-Based Simulated Observations. Journal of Deep Space Exploration, 2024, 11(4): 405‒413 https://doi.org/10.15982/j.issn.2096-9287.2024.20230099

References

[1] 侯锡云,刘林. 共线平动点的动力学特征及其在深空探测中的应用[J]. 宇航学报,2008,29(3):737-747.
HOU X Y,LIU L. The dynamics and applications of the collinear libration points in deep space exploration[J]. Journal of Astronautics,2008,29(3):737-747.
[2] 徐明. 平动点轨道的动力学与控制研究综述[J]. 宇航学报,2009,30(4):1300-1313.
XU M. Overview of orbital dynamics and control for libration point orbits[J]. Journal of Astronautics,2009,30(4):1300-1313.
[3] 刘磊,陈明,张哲,等. 地月平动点轨道应用与研究进展[J]. 宇航学报,2019,40(8):850-860.
LIU L,CHEN M,ZHANG Z,et al. Progress on application and research of EarthMoon libration orbits[J]. Journal of Astronautics,2019,40(8):850-860.
[4] SWEETSER T H,BROSCHART S B,ANGELOPOULOS V,et al. AR-TEMIS mission design[J]. Space Science Review,2011,165(1-4):27-57
[5] 张宇,孔静,陈明,等. CE5T1拓展试验轨道精度分析[ J]. 宇航学报,2019,40 (9):1015-1023.
ZHANG Y,KONG J,CHEN M,et al. Orbit accuracy analysis for CE5T extended mission[J]. Journal of Astronautics,2019,40 (9):1015-1023.
[6] 张立华,熊亮,王鹏,等. “嫦娥4号”中继星任务分析与系统设计[J]. 深空探测学报(中英文),2018,5(6):516-523.
ZHANG L H,XIONG L,WANG P,et al. The mission analysis and system design of Chang’ e-4 lunar relay communication satellite[J]. Journal of Deep Space Exploration,2018,5(6):516-523.
[7] MURAKAMI N,YAMANAKA K. Trajectory design for rendezvous in lunar distant retrograde orbit[C]//Proceedings of 2015 IEEE Aerospace Conference. Piscataway:IEEE Press,2015:1-13.
[8] LAM T,WHIFFEN G J. Exploration of distant retrograde orbits around Europa[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting. San Diego:AAS Publications Office,2005:AAS05-110.
[9] MAZANEK D D,MERRILL R G,BROPHY J R,et al. Asteroid redirect mission concept:a bold approach for utilizing space resources[J]. Acta Astronautica,2015,117:163-171.
[10] STRANGE N,DAMON L,MCELRATH T,et al. Overview of mission design for NASA Asteroid Redirect Robotic Mission concept [C]//33rd International Electric Propulsion Conference. Washington,D. C.:NASA,2013:6-10.
[11] MING X,XU S. Exploration of distant retrograde orbits around Moon[J]. Acta Astronautica,2009,65(5-6):853-860.
[12] 徐明,徐世杰. 绕月飞行的大幅值逆行轨道研究[J]. 宇航学报,2009,30(5):1785-1791.
XU M,XU S J. Stability analysis and transiting trajectory design for retrograde orbits around Moon[J]. Journal of Astronautics,2009,30(5):1785-1791.
[13] VAQUERO M,HOWELL K. C. Leveraging resonant orbit manifolds to design transfers between libration point orbits in Multi-Body regimes[C]//Proceedings of 23rd AAS/AIAA Space Flight Mechanics Meeting. Kauai,Hawaii:AAS/AIAA,2013.
[14] CAPDEVILA L,GUZZETTI D,HOWELL K. various transfer options from Earth into distant retrograde orbits in the vicinity of the Moon[C]//Proceedings of AAS/AIAA Space Flight Mechanics Meeting. [S. l.]:AIAA,2014.
[15] MURAKAMI N,YAMANAKA K. Trajectory design for rendezvous in lunar distant retrograde orbit[C]//Proceedings of 2015 IEEE Aerospace Conference. Piscataway:IEEE,2015:1-13.
[16] CONTE D,DI C M,HO K,et al. Earth-Mars transfers through Moon distant retrograde orbits[J]. Acta Astronautica,2018,143:372-379.
[17] 彭超,温昶煊,高扬. 地月空间DRO 与HEO( 3:1/2:1) 共振轨道延拓求解及其稳定性分析[J]. 载人航天,2018,24(6):703-718.
PENG C,WEN C X,GAO Y. DRO and HEO (3:1/2:1) resonant orbits in cislunar space calculated by continuation and their stability analysis[J]. Manned Spaceflight,2018,24(6):703-718.
[18] 吴小婧,曾凌川,巩应奎. DRO计算及其在地月系中的摄动力研究[J]. 北京航空航天大学学报,2020,46(5):883-892.
WU X J,ZENG L C,GONG Y K. DRO computation and its perturbative force in the Earth-Moon system[J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(5):883-892.
[19] 曾 豪,李朝玉,徐瑞,等. 地月Halo与DRO支持的往返月球任务轨道[J]. 宇航学报,2021,42(12):1483-1492.
ZENG H,LI Z Y,PENG K,et al. Research on application of Earth-Moon NRHO and DRO for lunar exploration[J]. Journal of Astronautics,2021,42(12):1483-1492.
[20] 王艾雪,张晨,王蜀泉,等. 基于地月自由返回轨道的DRO入轨策略[J]. 载人航天,2022,28(1):81-89.
WANG A X,ZHANG C,WANG S Q,et al. Design considerations for access in to Earth-Moon DROs with lunar free-return trajectory[J]. Manned Spaceflight,2020,46(5):883-892.
[21] 王文彬. 基于DRO-LEO编队的地月航天器自主导航和授时研究[D]. 北京:中国科学院大学,2020.
WANG W B. Autonomous navigation and timing in cislunar space enabled by DRO-LEO formation[D]. Beijing:University of Chinese Academy of Sciences,2020.
[22] 李霜琳,蒲京辉,郭鹏斌,等. DRO卫星编队同波束差分相对导航[J]. 深空探测学报(中英文),2023,10(2):211-219.
LI S L,PU J H,GUO P B,et al. Single-Beam differential relative navigation of DRO satellite formation[J]. Journal of Deep Space Exploration,2023,10(2):211-219.
[23] 唐歌实,韩松涛,曹建峰,等. 深空网测控模式 ΔDOR 测量建模与精度分析[J]. 力学学报,2015,47(1):24-30.
TANG G S,HAN S T,CAO J F,et al. Model and analysis of ?DOR tracking by China DSN with TT&C mode[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(1):24-30.
[24] 韩松涛,唐歌实,陈略,等. 中国深空网VLBI相关处理器开发与应用[J]. 工程研究——跨学科视野中的工程,2015,7(1):45-49.
HAN S T,TANG G S,CHEN L,et al. Development and application of correlator in interferometric tracking center of China DSN[J]. Journal of Engineering Studies,2015,7(1):45-49.
[25] 路伟涛,谢剑锋,任天鹏,等. 中国深空探测网干涉测量系统性能分析[J]. 遥测遥控,2018,39(6):1-6.
LU W T,XIE J F,REN T P,et al. Performance analysis of China Deep Space Net interferometry system[J]. Journal of Telemetry,Tracking and Command,2018,39(6):1-6.
[26] 王美,陈略,韩松涛,等. 深空测控网干涉测量系统在“鹊桥”任务中的应用[J]. 深空探测学报(中英文),2018,5(6):539-543.
WANG M,CHEN L,HAN S T,et al. Application of deep space VLBI system in Queqiao mission[J]. Journal of Deep Space Exploration,2018,5(6):539-543.
[27] 牛文东,段建锋,王美,等. 中国深空网VLBI定轨精度及分时采集模式分析[J]. 深空探测学报(中英文),2021,8(5):495-502.
NIU W D,DUAN J F,WANG M,et al. A study of the orbit determination ability and time-sharing acquisition mode for China’s Deep Space Network VLBI data[J]. Journal of Deep Space Exploration,2021,8(5):495-502.
[28] 任天鹏,路伟涛,孔静,等. “嫦娥五号”深空干涉测量性能分析[J]. 深空探测学报(中英文),2021,8(6):572-581.
REN T P,LU W T,KONG J,et al. Performance analysis of deep-space interferometry in Chang’E-5 mission[J]. Deep Space Exploration,2021,8(6):572-581.
[29] 陈明,唐歌实,曹建峰,等. 嫦娥一号绕月探测卫星精密定轨实现[J]. 武汉大学学报,2011,36:212-217.
CHEN M,TANG G S,CAO J F,et al. Precision orbit determination of CE-1 lunar satellite[J]. Geomatics and Information Science of Wuhan University,2011,36:212-217.
[30] LI P J,HU X G,HUANG Y,et al. Orbit determination for Chang’E-2 lunar probe and evaluation of lunar gravity models[J]. Science in China Series G,2012,55(3):514-522.
[31] 黄勇,昌胜骐,李培佳,等. 嫦娥三号月球探测器的轨道确定和月面定位[J]. 科学通报,2014,59:2268-2277.
HUANG Y,CHANG S Q,LI P J,et al. Orbit determination of Chang’ E-3 and positioning of the lander and rover[J]. Chinese Science Bulletin,2014,59:2268-2277.
[32] FAN M,HU X G,DONG G L,et al. Orbit improvement for Chang’E5T lunar returning probe with GNSS technique[J]. Advance in Space Resarch,2015(56):2473-2482.
[33] QIN S H,HUANG Y,LI P J,et al. Orbit and tracking data evaluation of Chang’E-4 relay satellite[J]. Advance in Space Research,2019(64):836-846.
[34] 李培佳,黄勇,樊敏,等. 嫦娥五号探测器交会对接段定轨精度研究[J]. 中国科学:物理学 力学 天文学,2021,51(11):1-12.
LI P J,HUANG Y,FAN M,et al. Orbit determination for Chang’E-5 prober in rendezvous and docking[J]. Sci Sin-Phys Mech Astron,2021,51(11):1-12.
[35] 董光亮,李海涛,郝万宏,等. 中国深空测控系统建设与技术发展[J]. 深空探测学报(中英文),2018,5:99-114.
DONG G L,LI H T,HAO W H,et al. Development and future of China’s deep space TT&C system[J]. Deep Space Exploraiton,2018,5:99-114.
PDF(1405 KB)

Accesses

Citations

Detail

Sections
Recommended

/