PDF(1984 KB)
Topic: Autonomous Navigation and Control Technology for Landing and Ascending of Extraterrestrial Objects
Design of Adaptive Iterative Guidance Scheme for Mars Ascent Vehicle Orbiting Phase
- SONG Chun1, GUO Yanning2, GUO Minwen3, LI Kun2
Author information
+
1. Science and Technology on Space Physics Laboratory, Beijing 100076, China;
2. Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
3. Beijing Institute of Control Engineering, Beijing 100094, China
Show less
History
+
Received |
Revised |
Published |
01 Nov 2013 |
30 Dec 2013 |
26 Mar 2024 |
Issue Date |
|
26 Mar 2024 |
|
Abstract
An adaptive iterative guidance strategy was designed for the guidance of Mars ascent vehicle in the orbiting phase. To reduce the effects of initial state deviation and the uncertainty of the Martian environment, the remaining flight time was calculated iteratively in the guidance coordinate system in each cycle, and the optimal control angle satisfying the constraints of the target point position and velocity vector was solved under the fixed thrust of the ascender, so as to correct the flight trajectory in real time. The simulation results show that compared with the traditional open-loop guidance scheme, the proposed scheme significantly improves guidance accuracy, in which the altitude error is reduced by three orders of magnitude, the maximum velocity error is reduced to one-third of that of the original open-loop guidance, the orbital inclination and eccentricity errors at the entry point satisfy the basic engineering requirements, and it can be used as a reliable scheme for the future guidance of the Mars ascent vehicle in the orbiting phase.
Keywords
Mars ascent vehicle /
orbiting phase /
iterative guidance /
optimal control
Cite this article
Download citation ▾
SONG Chun, GUO Yanning, GUO Minwen, LI Kun.
Design of Adaptive Iterative Guidance Scheme for Mars Ascent Vehicle Orbiting Phase. Journal of Deep Space Exploration, 2024, 11(1): 31‒39 https://doi.org/10.15982/j.issn.2096-9287.2024.20230055
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 朱新波,谢攀,徐亮,等. “天问一号”火星环绕器总体设计综述[J]. 航天返回与遥感,2021,42(03):1-12.
ZHU X B,XIE P,XU L,et al. Summary of the overall design of Mars orbiter of Tianwen-1[J]. Spacecraft Recovery & Remote Sensing,2021,42(03):1-12.
[2] 孟林智,董捷,许映乔,等. 无人火星取样返回任务关键环节分析[J]. 深空探测学报(中英文),2016,3(2):114-120, 128.
MENG L Z,DONG J,XU Y Q,et al. Analysis of key technologies for unmanned Mars sample return mission [J]. Journal of Deep Space Exploration,2016,3(2):114-120, 128.
[3] 欧阳自远,肖福根. 火星及其环境[J]. 航天器环境工程,2012,29(6):591-601.
OUYANG Z Y,XIAO F G. The Mars and its environment[J]. Spacecraft Environment Engineering,2012,29(6):591-601.
[4] MCCORMICK B,COMPTON J. Mars sample return ascent vehicle conceptual guidance algo-rithm[C]//Proceedings of Astrodynamics Conference. Williamsb-urg,USA:[s. n.],1986.
[5] ANZALONE E,ERICKSON D,MONTALVO C. Guidance and navigation design for a Martian sample return ascent vehicle[C]//Proceedings of Navigation and Control Conference. Breckenridge,USA:[s. n.],2019.
[6] 郭敏文,李琨,黄翔宇,等. 固推约束下的火星表面 起飞上升制导律设计[J]. 宇航学报,2022,43(11):1479-1486.
GUO M W,LI K,HUANG X Y,et al. Guidance design of a Mars ascent vehicle with solid motor[J]. Journal of Astronautics,2022,43(11):1479-1486.
[7] LU P ,SUN H ,TSAI B . Closed-loop endo-atmospheric ascent guidance[J]. Journal of Guidance,Control,and Dynamics,2003,26(2):283-294.
[8] 李连仲. 远程弹道导弹闭路制导方法研究[J]. 系统工程与电子技术,1980(4):1-17.
LI L Z. Research on closed-loop guidance methods for long-range ballistic missiles[J]. Systems Engineering and Electronics. 1980(4) :1-17
[9] HAEUSSERMANN W. Saturn launch vehicle' s navigation,guidance and control system[J]. Automatica,1971,7(5):537-556.
[10] 秦旭东,龙乐豪,容易. 我国航天运输系统成就与展望[J]. 深空探测学报(中英文),2016,3(4):315-322.
QIN X D,LONG L H,RONG Y. The achievement and future of China space transportation system[J]. Journal of Deep Space Exploration,2016,3(4):315-322.
[11] 巩庆海,宋征宇,吕新广. 迭代制导在月面上升段的应用研究[J]. 载人航天,2015(3):231-236, 269.
GONG Q H,SONG Z Y,LV X G. Study on application of iterative guidance in lunar ascent[J]. Manned Space flight. 2015(3):231-236, 269.
[12] 王颖,唐明亮,郝钏钏,等. 一种适应多目标轨道的运载火箭弹道制导设计方法[J]. 深空探测学报(中英文),2020,7(4):391-398.
WANG Y,TANG M L,HAO C C,et al. A union design method of trajectory and guidance for launch vehicles adapted to multi-target orbits[J]. Journal of Deep Space Exploration,2020,7(4):391-398.
[13] 傅瑜,陈功,卢宝刚,等. 基于最优解析解的运载火箭大气层外自适应迭代制导方法[J]. 航空学报,2011,32 (09):1696-1704.
FU Y,CHEN G,LU B G ,et al. A vacuum adaptive iterative guidance method of launch vehicle based on optimal analytical solution [J]. Acta Aeronautica et Astronautica Sinica,2011,32 (09):1696-1704.
[14] 周国财. 运载火箭迭代制导方法研究[D]. 西安:西北工业大学,2003.
ZHOU G C. Research on Iterative guidance method of Launch Vehicles [D]. Xi'an:Northwestern Polytechnical University,2003.
[15] 柯森锎,李爽,肖东东,等. 基于高斯伪谱法的火星表面上升燃耗最优轨迹设计[J]. 深空探测学报(中英文),2018,5(3):269-275.
KE S K,LI S,XIAO D D,et al. Minimum-fuel Mars ascent trajectory design based on Gauss peseudospectral method[J]. Journal of Deep Space Exploration,2018,5(3):269-275.
[16] 李琨. 火星上升器轨迹优化与制导方法研究[D]. 哈尔滨:哈尔滨工业大学,2022.
LI K. Trajectory optimization and guidance method of Mars ascent vehicle[D]. Harbin:Harbin Institute of Technology,2022.