PDF(828 KB)
Topic: Autonomous Navigation and Control Technology for Landing and Ascending of Extraterrestrial Objects
Mapped Chebyshev Pseudospectral Convex Optimization for Martian Ascent Trajectory Planning
- XU Yuanjing1, LIU Xu1, PENG Shengjun2, XI Tao3, ZHU Yongsheng4, XIAO Yao5, LI Shuang1
Author information
+
1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2. China Xi’an Satellite Control Center, Xi’an 710699, China;
3. State Key Laboratory of Aerospace Dynamics, Xi’an 710043, China;
4. Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201304, China;
5. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
Show less
History
+
Received |
Revised |
Published |
26 Dec 2022 |
21 Sep 2023 |
26 Mar 2024 |
Issue Date |
|
26 Mar 2024 |
|
Mapped Chebyshev pseudospectral convex optimization approach was proposed for Martian ascent trajectory optimization. Firstly, the lossless convexification technique was used to convexify the fuel-optimal problem of Martian ascent. Then, the convexified problem was discretized at mapped Chebyshev-Gauss-Lobatto points and interpolated by the barycentric rational interpolation techniques. Finally, the sequential convex optimization method was used to solve the convex problem iteratively to obtain the numerical optimal solution. Simulation results show that the proposed method is superior to the classical sequential convex optimization method in computational efficiency, and effectively improves the ill-condition of standard Chebyshev differential matrices.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] ANZALONE E, ERICKSON D, MONTALVO C. Guidance and navigation design for a martian sample return ascent vehicle[C]//Proceedings of AAS Guidance,Navigation and Control Conference. Breckenridge, CO, USA: AAS, 2019.
[2] 龚怡轩,刘旭,马瑞,等. 基于IMU/FADS/无线电的火星上升器组合导航方案[J]. 飞控与探测,2020,3(4):39-47.
GONG Y X,LIU X,MA R,et al. Radio/FADS/IMU based integrated navigation scheme for Mars ascent vehicle[J]. Flight Control & Detection,2020,3(4):39-47.
[3] 张扬眉,龚燃. 一种三元结构的火星采样返回任务方案分析[J]. 航天器工程,2012,21(4):89-99.
ZHANG Y M,GONG R. Analysis of a three-way structure of Mars sample return mission protocol[J]. Spacecraft Engineering,2012,21(4):89-99.
[4] DUX I J,HUWALDT J A,MCKAMEY R S,et al. Mars ascent vehicle gross lift-off mass sensitivities for robotic Mars sample return[C]//Proceedings of 2011 Aerospace Conference. [S. l.]:IEEE,2011:1-16.
[5] BENITO J,JOHNSON B. Trajectory optimization for a Mars ascent vehicle[C]//Proceedings of AIAA/AAS Astrodynamics Specialist Conference. [S. l.]: AIAA, 2016:5441.
[6] 柯森锎,李爽,肖东东,等. 基于高斯伪谱法的火星表面上升燃耗最优轨迹设计[J]. 深空探测学报(中英文),2018,5(3):269-275.
KE S K,LI S,XIAO D D,et al. Minimum-fuel Mars ascent trajectory design based on gauss peseudospectral method[J]. Journal of Deep Space Exploration,2018,5(3):269-275.
[7] ACIKMESE B,PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance,Control,and Dynamics,2007,30(5):1353-1366.
[8] 周鼎,陈韦贤,邱伟. 利用视加速度补偿和推力逐级释放的垂直着陆制导方法[J]. 飞控与探测,2021,4(3):8-14.
ZHOU D,CHEN W X,QIU W. A vertical landing guidance method using apparent acceleration compensation and step-by-step release of thrust[J]. Flight Control & Detection,2021,4(3):8-14.
[9] LIU X,LI S,XIN M. Mars entry trajectory planning with range discretization and successive convexification[J]. Journal of Guidance,Control,and Dynamics,2022,45(4):755-763.
[10] CHENG X,LI H,ZHANG R. Efficient ascent trajectory optimization using convex models based on the Newton-Kantorovich/pseudospectral approach[J]. Aerospace Science and Technology,2017,66:140-151.
[11] SUN Z,CAO T,WANG S,et al. Convex method for ascent trajectory optimization using iterative narrowing trust region[C]//Proceedings of 2018 IEEE CSAA Guidance,Navigation and Control Conference (CGNCC). [S. l.]:IEEE,2018:1-6.
[12] BENEDIKTER B,ZAVOLI A,COLASURDO G. A convex approachto rocket ascent trajectory optimization[C]//Proceedings of 8thEuropean Conference for Aeronautics and Space Sciences (EUCASS).Madrid, Spain: the EUCASS Association ,2019: 430-445.
[13] 刘旭,叶松,林子瑞,等. 火星大气进入轨迹伪谱凸优化设计方法[J]. 宇航学报,2022,43(1):71-80.
LIU X,YE S,LIN Z R,et al. Pseudospectral convex programming approach for Mars atmospheric entry trajectory planning[J]. Journal of Astronautics,2022,43(1):71-80.
[14] 唐胜景,王肖,郭杰. 基于 hp 伪谱凸优化的高超声速滑翔飞行器轨迹优化与制导[J]. 战术导弹技术,2020,5:66-75.
TANG S J,WANG X,GUO J. Trajectory optimization and guidance for hypersonic gliding vehicles based on HP pseudospectral convex programming[J]. Tactical Missile Technology,2020 ( 5) :66-75.
[15] LIU X,LI S,XIN M. Pseudospectral convex optimization based model predictive static programming for constrained guidance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2232-2244.
[16] LI Y,CHEN W,YANG L. Successive Chebyshev pseudospectral convex optimization method for nonlinear optimal control problems[J]. International Journal of Robust and Nonlinear Control,2022,32(1):326-343.
[17] GUO X,ZHU M. Direct trajectory optimization based on a mapped Chebyshev pseudospectral method[J]. Chinese Journal of Aeronautics,2013,26(2):401-412.
[18] CAI W,ZHU Y,YANG L,et al. Optimal guidance for hypersonic reentry using inversion and receding horizon control[J]. IET Control Theory & Applications,2015,9(9):1347-1355.
[19] SHEN J,TANG T,WANG L L. Spectral methods:algorithms,analysis and applications[M]. Berlin, Germany: Springer Science and Business Media, 2011: 279-298.
[20] BERRUT J P,TREFETHEN L N. Barycentric lagrange interpolation[J]. SIAM Review,2004,46(3):501-517.
[21] LOFBERG J. YALMIP:a toolbox for modeling and optimization in MATLAB[C]//Proceedings of 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508). [S. l.]:IEEE,2004:284-289.
[22] MOSEK A. Mosek optimization toolbox for matlab[M]. User’s Guide and Reference Manual,Version,2019,4: 1-399.