Analysis and Design of Asteroid Impact Defense Mission
ZHANG He, GU Zheng, HAN Chengzhi
Author information+
Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
Show less
History+
Received
Revised
Published
14 Mar 2023
27 Jul 2023
17 Oct 2023
Issue Date
17 Oct 2023
Abstract
To deal with the risk of high-risk near-Earth asteroid impacts on Earth,in this article,a detailed mission analysis of impact defense was conducted. Based on this,an “observation + impact + evaluation” asteroid impact defense mission plan was proposed,which solves the problem of existing plans relying on ground-based observation and being difficult to accurately evaluate. Kinetic energy impact and comprehensive and accurate efficiency evaluation can be achieved through a single mission. This paper can provide reference for asteroid exploration missions
ZHANG He, GU Zheng, HAN Chengzhi.
Analysis and Design of Asteroid Impact Defense Mission. Journal of Deep Space Exploration, 2023, 10(4): 387‒396 https://doi.org/10.15982/j.issn.2096-9287.2023.20230025
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
[1] ROGERS G,IZENBERG N. Comparison of the efficiency of various asteroid hazard mitigation techniques[R]. Colorado:NASA,2006. [2] SANCHEZ P,COLOMBO C,VASILE M,et al. Multicriteria comparison among several mitigation strategies for dangerous near-Earth objects[J]. Journal of Guidance,Control,and Dynamics,2009,32(1):121-142. [3] 马鹏斌,宝音贺西. 近地小行星威胁与防御研究现状[J]. 深空探测学报(中英文),2016,3(1):10-17.MA P B,BAOYIN H X. Research status of the near-Earth asteroids' hazard and mitigation[J]. Journal of Deep Space Exploration,2016,3(1):10-17. [4] COWEN R. The day the dinosaurs died[J]. Astronomy,1996,24(4):34-41. [5] WEISBIN C,LINCOLN W,WILCOX B,et al. Comparative analysis of asteroid-deflection approaches[C]//Proceedings of 2015 IEEE Aerospace Conference.[S. l.]:IEEE,2015. [6] 李飞,孟林智,王彤,等. 国外近地小行星撞击地球防御技术研究[J]. 航天器工程,2015,24(2):87-95.LI F,MENG L Z,WANG T,et al. Summary of near Earth asteroid defense technology[J]. Spacecraft Engineering,2015,24(2):87-95. [7] CLARKE A C. 2001:a space odyssey[M]. New York:[S. l.],1968. [8] BELTON M J S,A'HEARN M F. Deep sub-surface exploration of cometary nuclei[J]. Advances in Space Research,1999,24(9):1167-1173. [9] A'HEARN F M. Deep impact mission[J]. Space Science Reviews,2005,117:23-42. [10] RUSSELL C T. Deep impact mission:looking beneath the surface of a cometary nucleus[M]. Netherlands:Spinger,2005. [11] A'HEARN M F,BELTON M J,DELAMERE W A,et al. Deep Impact:excavating comet Tempel 1[J]. Science,2005,310(5746):258-264. [12] VEVERKA J,KLAASEN K,A'HEARN M,et al. Return to comet Tempel 1:overview of Stardust-NExT results[J]. Icarus,2013,222(2):424-435. [13] NASA. Deep impact/extrasolar planet observation and deep impact extended investigation(EPOXI)(EB/OL).[2023-07-06]. https://science.nasa.gov/mission/deep-impact-epoxi/. [14] SCHULTZ H P,HERMALYN B,VEVERKA J. The deep impact crater on 9P/Tempel-1 from Stardust-NExT[J]. Icarus,2013,222(2):502-515. [15] GRYKOWSKI A,LAMBERT A R,MARCHIS F,et al. Light curves and colours of the ejecta from Dimorphos after the DART impact[J]. Nature,2023,616:461-464. [16] NASA. NASA DART imagery shows changed orbit of target asteroid[EB/OL]. (2022-10-12)[2023-5-12]. https//www. nasa. gov/feature/nasa-dart-imagery-shows-changed-orbit-of-target-asteroid. [17] CRISTINA A T,SHANTANU P N,SCHEIRICH P,et al. Orbital period change of Dimorphos due to the DART kinetic impact[J]. Nature,2023,616(7957):448-451. [18] CHENG F A,AGRUSA F H,BARBEE W B,et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos[J]. Nature,2023,616(7957):457-460. [19] NASA. DART:double asteroid redirection test[EB/OL]. (2023-3-12)[2023-5-12].https://dart.jhuapl.edu/Mission/index,php. [20] 李虹琳,党丽芳. 美欧合作的近地小行星防御任务进展[J]. 空间碎片研究,2021,21(2):35-39.LI H L,DANG L F. Progress of U. S. -European joint near-Earth asteroid defense mission[J]. Space Debris Research,2021,21(2):35-39. [21] SYAL M B,DEARBORN D S P,SCHULTZ P H. Limits on the use of nuclear explosives for asteroid deflection[J]. Acta Astronautica,2013(90):103-111 [22] 刘雪奇,孙海彬,孙胜利. 近地小行星防御策略分析[J]. 深空探测学报(中英文),2017,4(6):557-563.LIU X Q,SUN H B,SUN S L. Analysis of defense strategies of near-Earth asteroids[J]. Journal of Deep Space Exploration,2017,4(6):557-563. [23] DENARDO B P,NYSMITH C R. Momentum transfer and cratering phenomena associated with the impact of aluminum spheres into thick aluminum targets at velocities to 24000 ft/s[C]//Proceeding of the AGARD-NATO specialists. The fluid dynamic aspects of space flight. New York:Gordon and Breach Science Publishers,1964. [24] LAWRENCE R J. Enhanced momentum transfer from hypervelocity particle impacts[J]. International Journal of Impact Engineering,1990,10(1-4):337-349. [25] WALKER D J,CHOCRON S. Momentum enhancement in hypervelocity impact[J]. International Journal of Impact Engineering,2011,38(6):A1-A7 [26] TOBIAS HOERTH A C. Momentum transfer in hypervelocity impact experiments on rock targets[J]. Procedia Engineering,2015(103):197-204 [27] WALKER J D,CHOCRON S,DURDA D D,et al. Momentum enhancement from aluminum striking granite and the scale size effect[J]. International Journal of Impact Engineering,2013,56:12-18. [28] 张韵,刘岩,李俊峰. 小行星防御动能撞击效果评估[J]. 深空探测学报(中英文),2017,4(1):51-57.ZHANG Y,LIU Y,LI J F. Evaluation of effects of kinetic impact deflection on hazardous asteroids[J]. Journal of Deep Space Exploration,2017,4(1):51-57. [29] FLYNN J G,DURDA D D,MOLESKY J M,et al. Momentum transfer in hypervelocity cratering of meteorites and meteorite analogs:implications for orbital evolution and kinetic impact deflection of asteroids[J]. International Journal of Impact Engineering,2020,(136):103437.
AI Summary ×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.