Analysis and Design of Asteroid Impact Defense Mission

ZHANG He, GU Zheng, HAN Chengzhi

PDF(3016 KB)
PDF(3016 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (4) : 387-396. DOI: 10.15982/j.issn.2096-9287.2023.20230025
Special Issue:Monitoring of and Desense Against Near-Earth Asteroids

Analysis and Design of Asteroid Impact Defense Mission

  • ZHANG He, GU Zheng, HAN Chengzhi
Author information +
History +

Abstract

To deal with the risk of high-risk near-Earth asteroid impacts on Earth,in this article,a detailed mission analysis of impact defense was conducted. Based on this,an “observation + impact + evaluation” asteroid impact defense mission plan was proposed,which solves the problem of existing plans relying on ground-based observation and being difficult to accurately evaluate. Kinetic energy impact and comprehensive and accurate efficiency evaluation can be achieved through a single mission. This paper can provide reference for asteroid exploration missions

Keywords

asteroid / impact / defense / mission analysis / scheme design

Cite this article

Download citation ▾
ZHANG He, GU Zheng, HAN Chengzhi. Analysis and Design of Asteroid Impact Defense Mission. Journal of Deep Space Exploration, 2023, 10(4): 387‒396 https://doi.org/10.15982/j.issn.2096-9287.2023.20230025

References

[1] ROGERS G,IZENBERG N. Comparison of the efficiency of various asteroid hazard mitigation techniques[R]. Colorado:NASA,2006.
[2] SANCHEZ P,COLOMBO C,VASILE M,et al. Multicriteria comparison among several mitigation strategies for dangerous near-Earth objects[J]. Journal of Guidance,Control,and Dynamics,2009,32(1):121-142.
[3] 马鹏斌,宝音贺西. 近地小行星威胁与防御研究现状[J]. 深空探测学报(中英文),2016,3(1):10-17.MA P B,BAOYIN H X. Research status of the near-Earth asteroids' hazard and mitigation[J]. Journal of Deep Space Exploration,2016,3(1):10-17.
[4] COWEN R. The day the dinosaurs died[J]. Astronomy,1996,24(4):34-41.
[5] WEISBIN C,LINCOLN W,WILCOX B,et al. Comparative analysis of asteroid-deflection approaches[C]//Proceedings of 2015 IEEE Aerospace Conference.[S. l.]:IEEE,2015.
[6] 李飞,孟林智,王彤,等. 国外近地小行星撞击地球防御技术研究[J]. 航天器工程,2015,24(2):87-95.LI F,MENG L Z,WANG T,et al. Summary of near Earth asteroid defense technology[J]. Spacecraft Engineering,2015,24(2):87-95.
[7] CLARKE A C. 2001:a space odyssey[M]. New York:[S. l.],1968.
[8] BELTON M J S,A'HEARN M F. Deep sub-surface exploration of cometary nuclei[J]. Advances in Space Research,1999,24(9):1167-1173.
[9] A'HEARN F M. Deep impact mission[J]. Space Science Reviews,2005,117:23-42.
[10] RUSSELL C T. Deep impact mission:looking beneath the surface of a cometary nucleus[M]. Netherlands:Spinger,2005.
[11] A'HEARN M F,BELTON M J,DELAMERE W A,et al. Deep Impact:excavating comet Tempel 1[J]. Science,2005,310(5746):258-264.
[12] VEVERKA J,KLAASEN K,A'HEARN M,et al. Return to comet Tempel 1:overview of Stardust-NExT results[J]. Icarus,2013,222(2):424-435.
[13] NASA. Deep impact/extrasolar planet observation and deep impact extended investigation(EPOXI)(EB/OL).[2023-07-06]. https://science.nasa.gov/mission/deep-impact-epoxi/.
[14] SCHULTZ H P,HERMALYN B,VEVERKA J. The deep impact crater on 9P/Tempel-1 from Stardust-NExT[J]. Icarus,2013,222(2):502-515.
[15] GRYKOWSKI A,LAMBERT A R,MARCHIS F,et al. Light curves and colours of the ejecta from Dimorphos after the DART impact[J]. Nature,2023,616:461-464.
[16] NASA. NASA DART imagery shows changed orbit of target asteroid[EB/OL]. (2022-10-12)[2023-5-12]. https//www. nasa. gov/feature/nasa-dart-imagery-shows-changed-orbit-of-target-asteroid.
[17] CRISTINA A T,SHANTANU P N,SCHEIRICH P,et al. Orbital period change of Dimorphos due to the DART kinetic impact[J]. Nature,2023,616(7957):448-451.
[18] CHENG F A,AGRUSA F H,BARBEE W B,et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos[J]. Nature,2023,616(7957):457-460.
[19] NASA. DART:double asteroid redirection test[EB/OL]. (2023-3-12)[2023-5-12].https://dart.jhuapl.edu/Mission/index,php.
[20] 李虹琳,党丽芳. 美欧合作的近地小行星防御任务进展[J]. 空间碎片研究,2021,21(2):35-39.LI H L,DANG L F. Progress of U. S. -European joint near-Earth asteroid defense mission[J]. Space Debris Research,2021,21(2):35-39.
[21] SYAL M B,DEARBORN D S P,SCHULTZ P H. Limits on the use of nuclear explosives for asteroid deflection[J]. Acta Astronautica,2013(90):103-111
[22] 刘雪奇,孙海彬,孙胜利. 近地小行星防御策略分析[J]. 深空探测学报(中英文),2017,4(6):557-563.LIU X Q,SUN H B,SUN S L. Analysis of defense strategies of near-Earth asteroids[J]. Journal of Deep Space Exploration,2017,4(6):557-563.
[23] DENARDO B P,NYSMITH C R. Momentum transfer and cratering phenomena associated with the impact of aluminum spheres into thick aluminum targets at velocities to 24000 ft/s[C]//Proceeding of the AGARD-NATO specialists. The fluid dynamic aspects of space flight. New York:Gordon and Breach Science Publishers,1964.
[24] LAWRENCE R J. Enhanced momentum transfer from hypervelocity particle impacts[J]. International Journal of Impact Engineering,1990,10(1-4):337-349.
[25] WALKER D J,CHOCRON S. Momentum enhancement in hypervelocity impact[J]. International Journal of Impact Engineering,2011,38(6):A1-A7
[26] TOBIAS HOERTH A C. Momentum transfer in hypervelocity impact experiments on rock targets[J]. Procedia Engineering,2015(103):197-204
[27] WALKER J D,CHOCRON S,DURDA D D,et al. Momentum enhancement from aluminum striking granite and the scale size effect[J]. International Journal of Impact Engineering,2013,56:12-18.
[28] 张韵,刘岩,李俊峰. 小行星防御动能撞击效果评估[J]. 深空探测学报(中英文),2017,4(1):51-57.ZHANG Y,LIU Y,LI J F. Evaluation of effects of kinetic impact deflection on hazardous asteroids[J]. Journal of Deep Space Exploration,2017,4(1):51-57.
[29] FLYNN J G,DURDA D D,MOLESKY J M,et al. Momentum transfer in hypervelocity cratering of meteorites and meteorite analogs:implications for orbital evolution and kinetic impact deflection of asteroids[J]. International Journal of Impact Engineering,2020,(136):103437.
PDF(3016 KB)

Accesses

Citations

Detail

Sections
Recommended

/