Autonomous Navigation Method of Spacecraft in Libration Point Orbit Based on Space Objects Observations

LIANG Fei, WANG Yidi, ZHENG Wei

PDF(1758 KB)
PDF(1758 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (2) : 109-116. DOI: 10.15982/j.issn.2096-9287.2023.20230015
Topic: Celestial Navigation Technology for Deep Space Exploration

Autonomous Navigation Method of Spacecraft in Libration Point Orbit Based on Space Objects Observations

  • LIANG Fei, WANG Yidi, ZHENG Wei
Author information +
History +

Abstract

In order to achieve the autonomous operation of spacecraft in the Earth-Moon libration point orbits,an autonomous navigation method using space objects observations was proposed in this paper. Space objects refer to the catalogued space targets orbiting the Earth. In this method,the motion states of spacecraft can be estimated according to the angles between the spacecraft and space objects. Firstly,the constraints of star sensor field of view,earth occlusion and solar interference were analyzed,and Beidou satellites for observation are selected. Next,Fisher information matrix was adopted to analyze the observability of the system,and the optimal observation targets were selected based on the observability analysis results. Finally,spacecraft in Earth-Moon libration point orbit were selected to verify the feasibility of the proposed autonomous navigation method. The simulation results show that the positioning accuracy of the proposed method can converge to less than 1km when the simulation time are 20 hours.

Keywords

Earth-Moon libration point / autonomous navigation / space object / Fisher information matrix

Cite this article

Download citation ▾
LIANG Fei, WANG Yidi, ZHENG Wei. Autonomous Navigation Method of Spacecraft in Libration Point Orbit Based on Space Objects Observations. Journal of Deep Space Exploration, 2023, 10(2): 109‒116 https://doi.org/10.15982/j.issn.2096-9287.2023.20230015

References

[1] 周洋. 月球平动点导航卫星系统关键技术研究[D]. 南京:南京理工大学,2020.
ZHOU Y. Research on key technologies of lunar libration-point navigation satellite system[D]. Nanjing:Nanjing University of Science and Technology,2020
[2] 陈泽煜,贺永宁,宋宁,等. 美国阿尔忒弥斯载人登月计划进展[J]. 空间电子技术,2022,19(6):75-84
CHEN Z Y,HE Y N,SONG N,et al. Progress of the U. S. Artemis lunar program[J]. Space Electronic Technology,2022,19(6):75-84
[3] WHITLEY R,MARTINEZ R. Options for staging orbits in cislunar space[C]//Proceedings of 2016 IEEE Aerospace Conference. Big Sky:IEEE,2016.
[4] 张立华,熊亮,王鹏,等. “嫦娥4号”中继星任务分析与系统设计[J]. 深空探测学报(中英文),2018,5(6):515-523
ZHANG L H,XIONG L,WANG P,et al. The mission analysis and system design of Chang'e-4 lunar relay communication satellite[J]. Journal of Deep Space Exploration,2018,5(6):515-523
[5] 郝万宏,潘程吉. 深空探测无线电地基导航的统计信号处理方法[M]. 北京:清华大学出版社,2020.
HAO W F,PAN C J. Stastical signal processing for deep space radiometric navigation[M]. Beijing:Tsinghua University Press,2020.
[6] 魏二虎,孙聃石,揭元翔. 基于星光角距的月球探测器地月转移轨道天文导航研究[J]. 测绘地理信息,2020,45(5):13-15
WEI E H,SUN D S,JIE Y X. The celestial navigation of the lunar probe in transfer orbit based on the star lighting angle[J]. Journal of Geomatics,2020,45(5):13-15
[7] 宁晓琳,梁晓钰,吴伟仁,等. 月球探测器天文测角/单程无线电时间差分测距/差分测速导航方法[J]. 航空学报,2021,42(11):129-138
NING X L,LIANG X Y,WU W R,et al. Lunar probe navigation based on celestial angle measurement,one-way radio time-differenced distance and time differenced velocity measurement[J]. Acta Aeronautica et Astronautica Sinica,2021,42(11):129-138
[8] 郑伟,李治泽,李连升,等. 脉冲星导航在载人火星探测中的应用[J]. 载人航天,2022,28(5):613-619.
ZHENG W,LI Z Z,LI L S,et al. Application of pulsar-based navigation in manned Mars exploration[J]. Manned Spaceflight,2022,28(5):613-619.
[9] HILL K A. Autonomous navigation in libration point orbits[D]. Boulder:University of Colorado,2007.
[10] ZHAO L,WANG Y D,WEI Z. Space-based optical observations on space debris via multipoint of view[J]. International Journal of Aerospace Engineering,2020(2):1-12
[11] DRIEDGER M,FERGUSON P A. Feasibility study of an orbital navigation filter using resident space object observations[J]. Journal of Guidance,Control,and Dynamics,2021,4(3):622-628
[12] PIERCE S J. Modeling navigation system performance of a satellite-observing star tracker tightly integrated with an inertial measurement unit[D]. Ohio:Air Force Institute of Technology,2015.
[13] 欧阳威. 火星探测器自主导航方案设计与分析[D]. 长沙:国防科技大学,2017.
OUYANG W. Mars autonomous navigation scheme design and analysis[D]. Changsha:National University of Defense Technology,2017.
[14] CHARLS K. HERMES CubeSat costellation enhancement by novel pointing strategies and cislunar space extension investigation[D]. Milano:Politecnico Di MilanoDepartment of Aerospace Science and Technology,2021.
[15] STOKES G,VO C,SRIDHARAN R,et al. The space-based visible program[C]//Proceedings of Space 2000 Conference and Exposition. Long Beach,CA,USA:AIAA,2000.
[16] SIMON J J,JEFFREY K U. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3):401-422
[17] LEONARD F,EMAMI M R. A multi-spacecraft formation approach to space debris surveillance[J]. Acta Astronautica,2016,127:491-504
[18] 刘翔春. 空间目标光学监视卫星轨道设计及任务规划[D]. 长沙:国防科技大学,2018.
LIU X C. Orbit design and task planning of optics surveillance satellite for space objects[D]. Changsha:National University of Defense Technology,2018.
[19] 王大轶,侯博文,王炯琦,等. 航天器自主导航状态估计方法研究综述[J]. 航空学报,2021,42(4):72-89
WANG D Y,HOU B W,WANG J Q,et al. State estimation method for spacecraft autonomous navigation:review[J]. Acta Aeronautica et Astronautica Sinica,2021,42(4):72-89
[20] JOHN L C,JOHN L J. Optimal estimation of dynamic systems[M]. Second Edition,Newyork:CRC Press LLC,2011.
PDF(1758 KB)

Accesses

Citations

Detail

Sections
Recommended

/