Gravitational Wave Detection Spacecraft Noise Decomposition and Electromagnetic Force Noise Simulation

FANG Ziruo1,2, SHI Xingjian1,2, CHEN Kun1,2, CHEN Wen1,2, CAI Zhiming1

PDF(1177 KB)
PDF(1177 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (3) : 334-342. DOI: 10.15982/j.issn.2096-9287.2023.20230013
Special Issue:Space Gravitational Wave Detection
Special Issue:Space Gravitational Wave Detection

Gravitational Wave Detection Spacecraft Noise Decomposition and Electromagnetic Force Noise Simulation

  • FANG Ziruo1,2, SHI Xingjian1,2, CHEN Kun1,2, CHEN Wen1,2, CAI Zhiming1
Author information +
History +

Abstract

To address the sensitivity challenges inherent in gravitational wave detection instruments, this study unequivocally established the paramount indicators for both interferometer measurement noise and the proof mass residual acceleration noise within “Taiji Project” spacecraft. System noise was meticulously decomposed, revealing 26 distinct categories of interferometer measurement noise and 21 categories of residual acceleration noise. A comprehensive modelling approach was undertaken with specific focus on electromagnetic force noise. Through the design of a dedicated simulation system and subsequent calculations, the engineering viability of the spacecraft design proposal was verified. The simulation indicated that total electromagnetic force noise, calculated using parameters attainable with present-day engineering technology or parameters projected from the key technological roadmap, could satisfactorily meet the demanding requirements of gravitational wave detection missions. The findings of this research not only offer a robust framework for simulation and calculation of future noise variables, but also lay the groundwork for refining the indicator system of spacecraft design.

Keywords

gravitational wave detection / electromagnetic force / noise model / specification system / Taiji project

Cite this article

Download citation ▾
FANG Ziruo, SHI Xingjian, CHEN Kun, CHEN Wen, CAI Zhiming. Gravitational Wave Detection Spacecraft Noise Decomposition and Electromagnetic Force Noise Simulation. Journal of Deep Space Exploration, 2023, 10(3): 334‒342 https://doi.org/10.15982/j.issn.2096-9287.2023.20230013

References

[1] AMARO-SEOANE P,AUDLEY H,BABAK S,et al. Laser interferometer space antenna[J]. ArXiv preprint ,2017,1702: 00786.
[2] NI W T. ASTROD-GW:overview and progress[J]. International Journal of Modern Physics D,2013,22(1):1341004
[3] KAWAMURA S,NAKAMURA T,ANDO M,et al. The Japanese space gravitational wave antenna—DECIGO[J]. Classical and Quantum Gravity,2006,23(8):S125
[4] HARRY G M,FRITSCHEL P,SHADDOCK D A,et al. Laser interferometry for the big bang observer[J]. Classical and Quantum Gravity,2006,23(15):4887
[5] GONG Y,LUO J,WANG B. Concepts and status of Chinese space gravitational wave detection projects[J]. Nature Astronomy,2021,5(9):881-889
[6] 罗俊,艾凌皓,艾艳丽等. 天琴计划简介[J]. 中山大学学报(自然科学版),2021,60(1-2):1-19
LUO J,AI L H,AI Y L,et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(1-2):1-19
[7] 罗子人,张敏,靳刚,等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报(中英文),2020,7(1):3-10
LUO Z R,ZHANG M,JIN G,et al. Introduction of Chinese Space-Borne Gravitational Wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration,2020,7(1):3-10
[8] The Taiji Scientific Collaboration. China’s first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna[J]. Communications Physics,2021,4(1):34-38
[9] LUO Z,ZHANG M,WU Y. Recent status of Taiji program in China[J]. Chinese Journal of Space Science,2022,42(4):536-538
[10] 冯建朝,张晓峰,梁鸿,等. 太极二号卫星精密热控关键技术及试验验证[J]. 宇航学报,2023,44(1):132-142
FENG JC,ZHANG XF,LIANG H,et al. Key technology and experimental verification of precision thermal control of Taiji 2 satellite[J]. Journal of Astronautics,2023,44(1):132-142
[11] Taiji Scientific Collaboration. The pilot of Taiji program—from the ground to Taiji-2[J]. International Journal of Modern Physics A,2021,36(11n12):2102001
[12] 罗子人,白姗,边星,等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447
LUO Z R,BAI S,BIAN X,et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics,2013,43(4):415-447
[13] LUO Z,WANG Y,WU Y,et al. The Taiji program:a concise overview[J]. Progress of Theoretical and Experimental Physics,2021(5):05A108
[14] ROBSON T,CORNISH N J,LIU C. The construction and use of LISA sensitivity curves[J]. Classical and Quantum Gravity,2019,36(10):105011
[15] FOLKNER W M,HECHLER F,SWEETSER T H,et al. LISA orbit selection and stability[J]. Classical and Quantum Gravity,1997,14(6):1405
[16] SMITH T L,CALDWELL R R. LISA for cosmologists:calculating the signal-to-noise ratio for stochastic and deterministic sources[J]. Physical Review D,2019,100(10):104055
[17] LUO Z,GUO Z K,JIN G,et al. A brief analysis to Taiji:science and technology[J]. Results in Physics,2019,16:102918
[18] BARKE S. Inter-spacecraft frequency distribution[D]. Germany:Gottfried Wilhelm Leibniz Universität Hannover ,2015.
[19] ARMANO M,AUDLEY H,BAIRD J,et al. Sensor noise in LISA pathfinder:an extensive in-flight review of the angular and longitudinal interferometric measurement system[J]. Physical Review D,2022,106(8):082001
[20] OTTO M,HEINZEL G,DANZMANN K. TDI and clock noise removal for the split interferometry configuration of LISA[J]. Classical and Quantum Gravity,2012,29(20):205003
[21] TINTO M,ESTABROOK F B,ARMSTRONG J W. Time-delay interferometry for LISA[J]. Physical Review D,2002,65(8):082003
[22] PRINCE T A,TINTO M,LARSON S L,et al. LISA optimal sensitivity[J]. Physical Review D,2002,66(12):122002
[23] PEABODY H,MERKOWITZ S. LISA thermal design[J]. Classical and Quantum Gravity,2005,22(10):S403
[24] 邓剑峰,蔡志鸣,陈琨,等. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J]. 中国光学(中英文),2019,12(3):503-514
DENG J F,CAI Z M,CHEN K,et al. Drag-free control and its application in China's space gravitational wave detection[J]. Chinese Optics,2019,12(3):503-514
[25] SCHUMAKER B L. Disturbance reduction requirements for LISA[J]. Classical and Quantum Gravity,2003,20(10):S239
[26] ARMANO M,AUDLEY H,AUGER G,et al. Charge-induced force noise on free-falling test masses:results from LISA pathfinder[J]. Physical review letters,2017,118(17):171101
[27] SUMNER T J,MUELLER G,CONKLIN J W,et al. Charge induced acceleration noise in the LISA gravitational reference sensor[J]. Classical and Quantum Gravity,2020,37(4):045010
[28] 王赤,张贤国,徐欣锋,等. 中国月球及深空空间环境探测[J]. 深空探测学报(中英文),2019,6(2):105-118
WANG C,ZHANG X G,XU X F,et al. The lunar and deep space environment exploration in China[J]. Journal of Deep Space Exploration,2019,6(2):105-118
[29] ARMANO M,AUDLEY H,BAIRD J,et al. Spacecraft and interplanetary contributions to the magnetic environment on-board LISA Pathfinder[J]. Monthly Notices of the Royal Astronomical Society,2020,494(2):3014-3027
[30] ARMANO M,AUDLEY H,AUGER G,et al. Disentangling the magnetic force noise contribution in LISA Pathfinder[C]//Proceedings of Journal of Physics:Conference Series. [S. l. ]:IOP Publishing,2015,610(1):012024.
[31] SHAUL D N A,ARAÚJO H M,ROCHESTER G K,et al. Charge management for LISA and LISA Pathfinder[J]. International Journal of Modern Physics D,2008,17(7):993-1003
[32] BORTOLUZZI D,CARBONE L,CAVALLERI A,et al. Measuring random force noise for LISA aboard the LISA pathfinder mission[J]. Classical and Quantum Gravity,2004,21(5):S573
PDF(1177 KB)

Accesses

Citations

Detail

Sections
Recommended

/