Output Regulation Adaptive Drag-Free Control via Kalman Filter

SUN Xiaoyun1,2, WU Shufan1,2, SHEN Qiang1,2

PDF(1416 KB)
PDF(1416 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (3) : 283-291. DOI: 10.15982/j.issn.2096-9287.2023.20220116
Special Issue:Space Gravitational Wave Detection
Special Issue:Space Gravitational Wave Detection

Output Regulation Adaptive Drag-Free Control via Kalman Filter

  • SUN Xiaoyun1,2, WU Shufan1,2, SHEN Qiang1,2
Author information +
History +

Abstract

For a kind of adaptive output regulation control that can only obtain the reduced dimension output information of the system, in this paper, a model reference adaptive control method for output regulation based on Kalman filter was proposed, which used the nonlinear estimation ability of Kalman filter to realize the estimation of output measurement information to full dimensional state information, and used the observation state to realize adaptive tracking of the output of closed-loop system to the reference state to ensure the stability of each closed-loop signal. The above method was applied to the control of the drag-free stable platform in the space gravitational wave detection mission, and the stable output tracking ability of the drag-free control system was realized with unknown parameters and additional disturbances. Based on the theoretical analysis of each closed-loop signal stability realized by the Lyapunov method, numerical simulation comparison verifies the effectiveness of the method over the tracking ability of the general output tracking adaptive control method.

Keywords

Kalman filter / model reference adaptive control / output regulation / space-based gravitational wave detection / drag-free control

Cite this article

Download citation ▾
SUN Xiaoyun, WU Shufan, SHEN Qiang. Output Regulation Adaptive Drag-Free Control via Kalman Filter. Journal of Deep Space Exploration, 2023, 10(3): 283‒291 https://doi.org/10.15982/j.issn.2096-9287.2023.20220116

References

[1] FICHTER W,GATH P,VITALE S,et al. LISA Pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity,2005,22(10):S139
[2] MOBLEY F,FOUNTAIN G,SADILEK A,et al. Electromagnetic suspension for the tip-II satellite[J]. IEEE Transactions on Magnetics,1975(6):1712-1716
[3] 刘伟,高扬. 空间引力波探测中无拖曳控制方法研究[J]. 中国科学:物理学 力学 天文学,2020,50(7):112-122.
LIU W,GAO Y,Drag-free control methods for space-based gravitational-wave detection[J]. Scientia Sinica Physica,Mechanica & Astronomica,2020,50(7):112-122.
[4] 吴树范,王楠,龚德仁. 引力波探测科学任务关键技术[J]. 深空探测学报(中英文),2020,7(2):118-127
WU S F,WANG N,GONG D R. Key technologies for space science gravitational wave detection[J]. Journal of Deep Space Exploration,2020,7(2):118-127
[5] 邓剑峰,蔡志鸣,陈琨,等. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J]. 中国光学,2019,12(3):503-514
DENG J F,CAI Z M,CHEN K,et al. Drag-free control and its application in China's space gravitational wave detection[J]. Chinese Optics,2019,12(3):503-514
[6] FICHTER W,SCHLEICHER A,BENNANI S,et al. Closed loop performance and limitations of the LISA Pathfinder drag-free control system[C]//AIAA Guidance,Navigation and Control Conference and Exhibit. [S. l.]: AIAA, 2007.
[7] LIAN X,ZHANG J,LU L,et al. Frequency separation control for drag-free satellite with frequency-domain constraints[J]. IEEE Transactions on Aerospace and Electronic Systems,2021, 57(6): 4085-4096.
[8] WU S F,FERTIN D. Spacecraft drag-free attitude control system design with quantitative feedback theory[J]. Acta Astronautica,2008,62(12):668-682
[9] GUO J,TAO G,LIU Y. A multivariable MRAC scheme with application to a nonlinear aircraft model[J]. Automatica,2011,47(4):804-812
[10] ROY S B,BHASIN S,KAR I N,Combined MRAC for unknown MIMO LTI systems with parameter convergence[J]. IEEE Transactions on Automatic Control,2017,63(1):283-290.
[11] MCNAMARA P,VITALE S,DANZMANN K. LISA Pathfinder[J]. Classical and Quantum Gravity, 2008, 25(11): 114034.
[12] WU S,GIULICCHI L,FENAL T,et al. Attitude stabilization of LISA pathfinder spacecraft using colloidal micro-newton thrusters[C]// Porceedings of AIAA Guidance,Navigation,and Control Conference. [S. l. ]:AIAA,2011.
[13] WU S,GIULICCHI L,FENAL T,et al. Attitude control of LISA pathfinder spacecraft with micro-newton FEEP thrusters under multiple failures[C]//Proceedings of AIAA Guidance,Navigation,and Control Conference. [S. l. ]:AIAA,2010.
[14] 付海清,吴树范,刘梅林,等. 基于干扰观测器的空间惯性传感器自适应控制[EB/OL]. [2022-07-15]. 北京航空航天大学学报,http://www.cnki.com.cn/Article/CJFDTotal-BJHK20220514000.htm.
FU H,WU S,LIU M,SUN X. Disturbance-observer based adaptive control for space inertial sensor[EB/OL]. [2022-07-15]. Journal of Beijing University of Aeronautics and Astronautics,http://www.cnki.com.cn/Article/CJFDTotal-BJHK20220514000.htm.
[15] BUONOMANO A,MONTANARO U,PALOMBO A,et al. Dynamic building energy performance analysis:A new adaptive control strategy for stringent thermohygrometric indoor air requirements[J]. Appl. Energy,2016,163:361-386
[16] SONG G,TAO G. A partial-state feedback model reference adaptive control scheme[J]. IEEE Transactions on Automatic Control,2020,65(1):44-57
[17] MONTANARO U,OLM J M. Integral MRAC with minimal controller synthesis and bounded adaptive gains:the continuous-time case[J]. J. Franklin Inst.,2016,353(18):5040-5067
[18] CALLIESS J P,ROBERTS S J,RASMUSSEN C E,et al. Lazily adapted constant kinky inference for nonparametric regression and model-reference adaptive control[J]. Automatica,2020,122:109216
[19] CALLIESS J P. Conservative decision-making and inference in uncertain dynamical systems[D]. Oxford:University of Oxford,2014.
[20] CALLIESS J P. Lipschitz optimisation for Lipschitz interpolation[C]//Procedings of 2017 American Control Conference (ACC). [S. l.]:IEEE,2017:3141-3146.
[21] KANIESKI J M,TAMBARA R V,PINHEIRO H,et al. Robust adaptive controller combined with a linear quadratic regulator based on Kalman filtering[J]. IEEE Transactions on Automatic Control,2016,61(5):1373-1378
[22] ZHANG Y,XU Q. Adaptive sliding mode control with parameter estimation and Kalman filter for precision motion control of a piezo-driven microgripper[J]. IEEE Transactions on Control Systems Technology,2017,25,2:728-735
[23] ZHOU P,ZHANG S,WEN L,et al. Kalman filter-based data-driven robust model-free adaptive predictive control of a complicated industrial process[J]. IEEE Transactions on Automation Science and Engineering,2022,19(2):788-803
[24] 马浩君,韩鹏,高东,等. 深空双质量块无拖曳卫星H鲁棒控制器设计[J]. 哈尔滨工业大学学报,2021,53(2):1-13
MA H,HAN P,GAO D,et al. H robust controller design for deep space drag-free satellite[J]. Journal of Harbin Institute of Technology,2021,53(2):1-13
[25] TAO G,IOANNOU P A. Model reference adaptive control for plants with unknown relative degree[J]. IEEE Transactions on Automatic Control,1993,38(6):976-982
[26] SONG G,TAO G. A model reference adaptive control scheme with partial-state feedback for output tracking[C]//Proceedings of 2017 American Control Conference (ACC). [S. l. ]:IEEE,2017:2465-2470.
[27] SONG G,TAO G. Partial-state feedback multivariable MRAC and reduced-order designs[J]. Automatica,2021,129:109622
[28] 张锦绣,董晓光,曹喜滨. 基于无速度测量的无拖曳卫星自适应控制方法[J]. 宇航学报,2014,35(4):447-453
ZHANG J,DONG X,CAO X. An adaptive controller for drag-free satellites without velocity measurement[J]. Journal of Astronautics,2014,35(4):447-453
PDF(1416 KB)

Accesses

Citations

Detail

Sections
Recommended

/