Automatic Recognition and Detection of Lunar Concave Obstacles Based on Shadow Feature

LIU Xiaohui, LIU Shiying, LIU Shaoran, WANG Jia, QIAN Xueru

PDF(2422 KB)
PDF(2422 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (6) : 659-666. DOI: 10.15982/j.issn.2096-9287.2023.20220111

Automatic Recognition and Detection of Lunar Concave Obstacles Based on Shadow Feature

  • LIU Xiaohui, LIU Shiying, LIU Shaoran, WANG Jia, QIAN Xueru
Author information +
History +

Abstract

The widespread impact craters and other concave obstacles on the lunar surface are the key factors threatening the safe landing and roving of the lunar rover. Once trapped, it will bring risks of tilt, landslide, and even rollover to the lunar rover. Therefore, the effective recognition and detection of lunar concave obstacles are conductive to obstacle avoidance, and provide necessary information reference for the safe landing and roving of the lunar rover. Based on the concave obstacles’ feature that there is a one-to-one matching between the shadows and the highlights in the sun, an automatic recognition and detection method for the lunar concave obstacles is proposed. The adaptive dual threshold method is used to automatically separate the shadows and the highlights of the concave obstacles from the background. Each shadow and highlight are clustered the specific position and one-to-one matched using the sunlight direction with the prior forecast information involved. Then the rough extraction of every single concave obstacle are obtained. Finally the original sub-images sequence containing every single concave obstacle is traversed for edge detection and ellipse fitting, which can avoid mutual interference of multiple obstacles and effectively detect the locations and ranges of all concave obstacles.

Keywords

concave obstacles / threshold segmentation / cluster analysis / shadow matching / edge detection

Cite this article

Download citation ▾
LIU Xiaohui, LIU Shiying, LIU Shaoran, WANG Jia, QIAN Xueru. Automatic Recognition and Detection of Lunar Concave Obstacles Based on Shadow Feature. Journal of Deep Space Exploration, 2023, 10(6): 659‒666 https://doi.org/10.15982/j.issn.2096-9287.2023.20220111

References

[1] 骆磊,王心源,郭华东,等. 嫦娥一号DEM数据月表撞击坑自动检测[J]. 遥感学报,2014,18(1):105-116.
LUO L,WANG X Y,GUO D H,et al. Automatic detection of lunar craters based on CE-1 DEM data[J]. Journal of Remote Sensing,2014,18(1):105-116.
[2] KLUMPP A R,COLLIER J B. Lidar-based hazard avoidance for safe landing on Mars[J]. Journal of Guidance Control & Dynamics,2002,25(6):1091-1099
[3] 冯军华,崔祜涛,崔平远,等. 行星表面陨石坑检测与匹配方法[J]. 航空学报,2010,31(9):1858-1863
FENG J H,CUI H T,CUI P Y,et al. Autonomous crater detection and matching on planetary surface[J]. Acta Aeronautica ET Astronautica Sinica,2010,31(9):1858-1863
[4] YANG C,JOHNSON A E,MATTHIES L H,et al. Optical landmark detection for spacecraft navigation[C]//Proceedings of the 13th Annual AAS/AIAA Space Flight Mechanics Meeting. Puerto Rico:AIAA,2003.
[5] LEROY B,MEDIONI G,JOHNSON E,et al. Crater detection for autonomous landing on asteroids[J]. Image and Vision Computing,2001,19(11):787-792
[6] SAWABE Y,MATSUNAGA T,ROKUGAWA S. Automatic crater detection algorithm for the lunar surface using multiple approaches[J]. Journal of Remote Sensing,Society of Japan,2005,25(2):157-168
[7] 郑磊,胡维多,刘畅. 基于深度学习的大型陨石坑识别方法研究[J]. 北京航空航天大学学报,2020,46(5):994-1004
ZHENG L,HU W D,LIU C. Large crater identification method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(5):994-1004
[8] 丁萌,曹云峰,吴庆宪. 一种从月面图像检测陨石坑的方法[J]. 宇航学报,2020,46(5):994-1004
DING M,CAO Y F,WU Q X. A method of craters detection from the surface imagery of Moon[J]. Journal of Astronautics,2020,46(5):994-1004
[9] 欧阳自远. 月球科学概论[M]. 北京:中国宇航出版社,2005:58-64.
OUYANG Z Y. Introduction to lunar science[M]. Beijing:China Astronautic Publishing House,2005:58-64.
[10] STOFFLER D,RYDER G,LVANOV B A,et al. Cratering history and lunar chronology[J]. Review in Mineralogy and Geochemistry,2006,60(1):519-596
[11] 苟中魁,张少军,李忠富,等. 一种Otsu阈值法的推广——Otsu双阈值法[J]. 机械,2004,31(7):12-14
GOU Z K,ZHANG S J,LI Z F,et al. A dual threshold method based on Otsu method[J]. Machinery,2004,31(7):12-14
[12] 杨威,张田文. 一种用于二值图象分割的快速聚类算法[J]. 计算机研究与发展,1998,35(8):719-723
YANG W,ZHANG T W. A fast clustering algorithm for thresholded image segmentation[J]. Computer Research & Development,1998,35(8):719-723
[13] 钱洲元,贺亮,张瀚墨,等. 基于灰度特征与几何约束的月面陨石坑自动提取方法[J]. 载人航天,2021,27(2):158-168
QIAN Z Y,HE L,ZHANG H M,et al. Automatic extraction of lunar craters based on gray features and geometric constrains[J]. Manned Spaceflight,2021,27(2):158-168
[14] 杨世坤. 基于被动视觉的行星着陆自主障碍检测技术研究[D]. 北京:北京理工大学,2017.
YANG S K. Research on passive vision based autonomous hazard detection for planetary safe landing[D]. Beijing: Beijing Institute of Technology, 2017.
[15] 马泽祥. 月球软着陆多模障碍检测与识别方法研究[D]. 哈尔滨:哈尔滨工业大学,2018.
MA Z X. Multi-pattern obstacle detection and recognition methods for lunar soft landing[D]. Harbin: Harbin Institute of Technology,2018.
[16] 成浩,崔文超. 基于Hough变换的椭圆检测算法对比分析[J]. 软件导刊,2018,17(9): 115-121.
CHENG H,CUI W H. Contrastive study of elliptical detection based on Hough transform[J]. Software Guide,2018,17(9): 115-121.
PDF(2422 KB)

Accesses

Citations

Detail

Sections
Recommended

/