Data Driven-Based Asymmetric Constrained Control for Space Inertia Sensor

SUN Xiaoyun1,2, WU Shufan1,2, SHEN Qiang1,2

PDF(1889 KB)
PDF(1889 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (3) : 322-333. DOI: 10.15982/j.issn.2096-9287.2023.20220094
Special Issue:Space Gravitational Wave Detection

Data Driven-Based Asymmetric Constrained Control for Space Inertia Sensor

  • SUN Xiaoyun1,2, WU Shufan1,2, SHEN Qiang1,2
Author information +
History +

Abstract

Under the control framework of space gravitational wave detection spacecraft platform system, aiming at the high-precision control of nonlinear unmodeled dynamics and performance constraints of space inertial sensor, in this paper, a data-based adaptive control scheme based on data-driven theory was proposed to realize accurate and stable control target of non-affine non-global Lipstchiz space inertial sensor dynamic system. Based on the fuzzy rule, an additional uncertainty estimator is established, and its general approximation characteristics are used to ensure the bounded estimation error. Based on the Control Barrier Function (BLF), an asymmetric performance constraint is constructed, and the BLF-based controller is used to realize the asymmetric constraint control of the closed-loop signal. According to the principle of contraction mapping and the Lyapunov theory of discrete-time system, the boundedness of each closed-loop signal and adaptive estimation is analyzed, and numerical simulation verifies the feasibility and effectiveness of the data-driven adaptive asymmetric constraint control scheme.

Keywords

control barrier function / adaptive control / data-driven / space gravitational wave detection / asymmetric constraints

Cite this article

Download citation ▾
SUN Xiaoyun, WU Shufan, SHEN Qiang. Data Driven-Based Asymmetric Constrained Control for Space Inertia Sensor. Journal of Deep Space Exploration, 2023, 10(3): 322‒333 https://doi.org/10.15982/j.issn.2096-9287.2023.20220094

References

[1] FICHTER W,GATH P,VITALE S,et al. LISA Pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity,2005,22(10):S139
[2] MOBLEY F,FOUNTAIN G,SADILEK A,et al. Electromagnetic suspension for the tip-II satellite[J]. IEEE Transactions on Magnetics,1975,11(6):1712-1716
[3] 刘伟,高扬. 空间引力波探测中无拖曳控制方法研究[J]. 中国科学:物理学 力学 天文学,2020,50(7):112-122.
LIU W,GAO Y,Drag-free control methods for space-based gravitational-wave detection[J]. SCIENTIA SINICA Physica,Mechanica & Astronomica,2020,50(7):112-122.
[4] 吴树范,王楠,龚德仁. 引力波探测科学任务关键技术[J]. 深空探测学报(中英文),2020,7(2):118-127
WU S F,WANG N,GONG D R. Key technologies for space science gravitational wave detection[J]. Journal of Deep Space Exploration,2020,7(2):118-127
[5] 邓剑峰,蔡志鸣,陈琨,等. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J]. 中国光学,2019,12(3):503-514
DENG J,CAI Z,CHEN K,et al. Drag-free control and its application in China's space gravitational wave detection[J]. Chinese Optics,2019,12(3):503-514
[6] FICHTER W,SCHLEICHER A,BENNANI S,et al. Closed loop performance and limitations of the LISA Pathfinder drag-free control system[C]//Proceedings of AIAA Guidance,Navigation and Control Conference and Exhibit. [S. l. ]:AIAA,2007.
[7] LIAN X. Frequency separation control for drag free satellite with frequency domain constraints[J]. IEEE Transactions on Aerospace and Electronic Systems. (2021).
[8] WU S F,FERTIN D. Spacecraft drag-free attitude control system design with quantitative feedback theory[J]. Acta Astronautica,2008,62(12):668-682
[9] GUO J,TAO G,LIU Y. A multivariable MRAC scheme with application to a nonlinear aircraft model[J]. Automatica,2011,47(4):804-812
[10] ROY S B,BHASIN S,KAR I N. Combined MRAC for unknown MIMO LTI systems with parameter convergence[J]. IEEE Transactions on Automatic Control,2017,63(1):283-290
[11] HOU Z,XIONG S. On model-free adaptive control and its stability analysis[J]. IEEE Transactions on Automatic Control,2019,64(11):4555-4569
[12] CHI R,HUI Y,HUANG B,et al. Active disturbance rejection control for nonaffined globally lipschitz nonlinear discrete-time systems[J]. IEEE Transactions on Automatic Control,2021,66(12):5955-5967
[13] CHI R,LI H,SHEN D,et al. Enhanced P-type control:indirect adaptive learning from set-point updates[J]. IEEE Transactions on Automatic Contro,2023,l68(3): 1600-1613.
[14] WU S. Attitude stabilization of LISA Pathfinder spacecraft using colloidal micro-newton thrusters[C]//Proceedings of AIAA Guidance,Navigation,and Control Conference. [S. l. ]:AIAA,2011.
[15] WU S. Attitude control of LISA Pathfinder spacecraft with micro-newton FEEP thrusters under multiple failures[C]//Proceedings of AIAA Guidance,Navigation,and Control Conference. [S. l. ]:AIAA,2010.
[16] 张锦绣,董晓光,曹喜滨. 基于无速度测量的无拖曳卫星自适应控制方法[J]. 宇航学报,2014,35(4):447-453
ZHANG J X,DONG X G,CAO X B. An adaptive controller for drag-free satellites without velocity measurement[J]. Journal of Astronautics,2014,35(4):447-453
[17] LIU Z,YUE C,WU F,et al. Data-driven prescribed performance control for satellite with large rotational component[J]. Advances in Space Research,2023,71(1):744-755
[18] MONTEMURRO F. Test mass actuation algorithm for DFACS:S2-ASD-TN-2011 Iss. 21[R]. German:Astrium GmbH,2005.
[19] MONTEMURRO F,FICHTER W,SCHLOTTERER M. Sliding mode technique applied to test mass suspension control[J]. IFAC Proceedings Volumes,2007,40(7):627-632
[20] 付海清,吴树范,刘梅林,等. 基于干扰观测器的空间惯性传感器自适应控制[EB/OL]. 北京航空航天大学学报. [2022-07-15].https://www.cnki.com.cn/Article/CJFDTotal-BJHK20220514000.htm.
FU H,WU S,LIU M,et al. Disturbance-observer based adaptive control for space inertial sensor[EB/OL]. Journal of Beijing University of Aeronautics and Astronautics. [2022-07-15].https://www.cnki.com.cn/Article/CJFDTotal-BJHK20220514000.htm.
[21] MCNAMARA P. LISA Pathfinder[J]. Classical and Quantum Gravity,2008,25(11):114034
[22] 马浩君,韩鹏,高东,等. 深空双质量块无拖曳卫星H鲁棒控制器设计[J]. 哈尔滨工业大学学报,2021,53(2):1-13
MA H,HAN P,GAO D,et al. H robust controller design for deep space drag-free satellite[J]. Journal of Harbin Institute of Technology,2021,53(2):1-13
[23] FICHTER W. DFACS requirement specifications:S2-ASD-RS-2001[R]. German:Astrium GmbH,2005.
PDF(1889 KB)

Accesses

Citations

Detail

Sections
Recommended

/