PDF(1082 KB)
Special Issue:Space Gravitational Wave Detection
Special Issue:Space Gravitational Wave Detection
Optimal Design of Stable Configuration of Space Gravitational Wave Detector Based on Dual Quaternion
- ZHANG Jinxiu1, ZHANG Yu2, WANG Jihe1, YANG Jikun2, LU Zhenkun2, SONG Yuqi2
Author information
+
1. School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, China;
2. School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China
Show less
History
+
Received |
Revised |
Published |
17 Sep 2022 |
28 Dec 2022 |
17 Oct 2023 |
Issue Date |
|
17 Oct 2023 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] STEBBINS R T. Rightsizing LISA[J]. Classical and Quantum Gravity,2009,26(9):094014
[2] SWEETSER T H. An end-to-end trajectory description of the LISA mission[J]. Classical and Quantum Gravity 2005,22(10):S429.
[3] LUO J,CHEN L S,DUAN H Z,et al. TianQin:a space-borne gravitational wave detector[J]. Class Quantum Gravity 2016; 33(3):19.
[4] HU W R,WU Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5):685-686.
[5] XIA Y,LI G,HEINZEL G,RUEDIGER A,et al. Orbit design for the Laser Interferometer Space Antenna (LISA)[J]. Science China Physics,Mechanics and Astronomy,2010,53(1):179-186
[6] CHIHANG Y,HAO Z. Formation flight design for a LISA-like gravitational wave observatory via Cascade optimization[J]. Astrodynamics 2019,3(2):155-171.
[7] 万小波,张晓敏,黎明. 天琴计划轨道构型长期漂移特性分析[J]. 中国空间科学技术 2017; 37(3):110-116.
WAN X B,ZHANG X M,LI M. Analysis of long-period drift characteristics for orbit configuration of the Tianqin Mission[J]. Chinese Space Science and Technology,2017,37(3):110-116.
[8] YE B B,ZHANG X F,ZHOU M Y,et al. Optimizing orbits for TianQin[J]. International Journal of Modern Physics D,2019,28(9):1950121
[9] CHEN J L,MASDEMONT J J,GOMEZ G,et al. Rotation-translation coupling analysis on perturbed spacecraft relative translational motion[J]. Nonlinear Dynamics,2020,102(4):2549-2561
[10] DANG Q Q,GUI H C,WEN H. Dual-quaternion-based spacecraft pose tracking with a global exponential velocity observer[J]. Journal of Guidance,Control,and Dynamics,2019,42(9):2106-2115
[11] DANG Q Q,GUI H C,XU M,et al. Dual-quaternion immersion and invariance velocity observer for controlling asteroid-hovering spacecraft[J]. Acta Astronautica,2019,161:304-312
[12] DE CASTRO F Z,VALLE M E. A broad class of discrete-time hypercomplex-valued Hopfield neural networks[J]. Neural Networks,2020,122:54-67
[13] TSIOTRAS P,VALVERDE A. Dual quaternions as a tool for modeling,control,and estimation for spacecraft robotic servicing missions[J]. The Journal of the Astronautical Sciences,2020,67(2):595-629
[14] 北京宇航系统工程研究所. GB∕T 32296-2015,航天飞行器常用坐标系[S]. 北京:中国标准出版社,2015.
[15] WANG J Y,LIANG H Z,SUN Z W,et al. Finite-time control for spacecraft formation with dual-number-based description[J]. Journal of Guidance,Control,and Dynamics,2012,35(3):950-962
[16] JOFFE E,WEALTHY D,FERNANDEZ I,et al. LISA:heliocentric formation design for the laser interferometer space antenna mission[J]. Advances in Space Research,2021,67(11):3868-3879